

Catalog no. V260-20

Version B

010124 25-0256

U.S. Headquarters:

Invitrogen Corporation 1600 Faraday Avenue Carlsbad, CA 92008 Toll Free Tel: (800) 955-6288 Tel: (760) 603-7200 Fax: (760) 602-6500 E-mail: tech_service@invitrogen.com Web Site: www.invitrogen.com

European Headquarters:

Invitrogen BV PO Box 2312, 9704 CH Groningen The Netherlands Toll Free Tel: 00800 5345 5345 Toll Free Fax: 00800 7890 7890 Tel: +31 (0) 50 5299 299 Fax: +31 (0) 50 5299 281 E-mail: tech_service@invitrogen.nl

Table of Contents

TABLE OF CONTENTS	
GENERAL INFORMATION	. V
PURCHASER NOTIFICATION	VI
METHODS	1
OVERVIEW	1
CLONING INTO PVAX1 [©]	2
TRANSIENT TRANSFECTION	4
APPENDIX	
PVAX1 [©] VECTOR	5
PVAX1/LACZ [©] MAP	7
TECHNICAL SERVICE	8
REFERENCES	.10

General Information

Contents	20 µg each of $pVAX1^{\circ}$ and $pVAX1/lacZ^{\circ}$, lyophilized in TE, pH 8.0			
Shipping/Storage	Lyophilized plasmids are shipped at room temperature and should be stored at -20°C.			
Product Qualification	The pVAX1 and pVAX1/ <i>lacZ</i> vectors are qualified by restriction digest. Restriction digests must demonstrate the correct banding pattern when electrophoresed on an agarose gel. The table below lists the restriction enzymes used to digest each vector and the expected fragments.			
	Vector Restriction Enzyme Expected Fragments (bp)			
	pVAX1	EcoR V	2999	
		Hind III	2999	
		Nco I	1375, 1624	
		Pml I	2999	
	pVAX1/lacZ	EcoR V	6050	
		Hind III	6050	
		Nco I	1624, 4426	
		Pml I	6050	

Technical Service

For Technical Service, please call, write, fax or E-mail:

U.S. Headquarters: Invitrogen Corporation 1600 Faraday Avenue Carlsbad, CA 92008 Toll Free Tel: (800) 955-6288 Tel: (760) 603-7200 Fax: (760) 602-6500 E-mail: tech_service@invitrogen.com Web Site: www.invitrogen.com **European Headquarters:** Invitrogen BV PO Box 2312, 9704 CH Groningen The Netherlands Toll Free Tel: 00800 5345 5345 Toll Free Fax: 00800 7890 7890 Tel: +31 (0) 50 5299 299 Fax: +31 (0) 50 5299 281 E-mail: tech_service@invitrogen.nl

Purchaser Notification

Introduction	Use of the pVAX1 [©] vector is covered under a number of different licenses including those detailed below.		
CMV Promoter License	Use of the CMV promoter is covered under U.S. Patent Nos. 5,168,062 and 5,385,839 owned and licensed by the University of Iowa Research Foundation and may be used for research purposes only. Commercial users must obtain a license to these patents directly from the University of Iowa Research Foundation. Inquiries for commercial use should be directed to:		
	Brenda Akins University of Iowa Research Foundation (UIRF) 214 Technology Innovation Center Iowa City , IA 52242 Tel: 319-335-4549		
BGH PolyA Sequence License	The bovine growth hormone (BGH) polyadenylation sequence is licensed under U.S. Patent No. 5,122,458 for research purposes only. "Research purposes" means uses directed to the identification of useful recombinant proteins and the investigation of the recombinant expression of proteins, which uses shall in no event include any of the following:		
	a. any use in humans of a CLAIMED DNA or CLAIMED CELL;		
	b. any use in human of protein or other substance expressed or made at any stage of its production with the use of a CLAIMED DNA or a CLAIMED CELL;		
	c. any use in which a CLAIMED DNA or CLAIMED CELL would be sold or transferred to another party other than Invitrogen, its AFFILIATE, or its SUBLICENSEE;		
	d. any use in connection with the expression or production of a product intended for sale or commercial use; or		
	e. any use for drug screening or drug development.		
	Inquiries for commercial use should be directed to:		
	Bennett Cohen, Ph.D.Research Corporation Technologies101 North Wilmot Road, Suite 600Tucson, AZ 85711-3335Tel:1-520-748-4443Fax:1-520-748-0025		

Methods

Overview	
Introduction	pVAX1 [®] is a 3.0 kb plasmid vector designed for use in the development of DNA vaccines. The vector was constructed to be consistent with the Food and Drug Administration (FDA) document, "Points to Consider on Plasmid DNA Vaccines for Preventive Infectious Disease Indications", published December 22, 1996 (see FDA " Points to Consider " below). Features of the vector allow high-copy number replication in <i>E. coli</i> and high-level transient expression of the protein of interest in most mammalian cells (see pages 5-6 for more information). The vector contains the following elements:
	Human cytomegalovirus immediate-early (CMV) promoter for high-level expression in a wide range of mammalian cells
	• Bovine growth hormone (BGH) polyadenylation signal for efficient transcription termination and polyadenylation of mRNA
	• Kanamycin resistance gene for selection in <i>E. coli</i>
	The control plasmid, $pVAX1/lacZ^{\odot}$, is included for use as a positive control for transfection and expression in the cell line of choice.
Experimental	Use the following outline to clone and express your gene of interest in pVAX1.
Outline	• Consult the multiple cloning site described on page 3 to design a strategy to clone your gene into pVAX1.
	• Ligate your insert into the appropriate vector and transform into <i>E. coli</i> . Select transformants on LB plates containing 50 µg/ml kanamycin.
	• Analyze your transformants for the presence of insert by restriction digestion.
	• Select a transformant with the correct restriction pattern and use sequencing to confirm that your gene is cloned in the proper orientation.
	• Transfect your construct into the mammalian cell line of choice and test for transient expression of your protein of interest.
FDA "Points to Consider"	pVAX1 was constructed by modifying the vector, pcDNA3.1 [©] , to accommodate the following considerations put forth by the FDA Center for Biologics Evaluation and Research (CBER) in its document, "Points to Consider on Plasmid DNA Vaccines for Preventive Infectious Diseases Indications" (Docket no. 96N-0400).
	• Sequences not necessary for replication in <i>E. coli</i> or for expression of recombinant protein in mammalian cells were removed to limit DNA sequences with possible homology to the human genome and to minimize the possibility of chromosomal integration.
	• The kanamycin resistance gene was substituted for the ampicillin resistance gene because aminoglycoside antibiotics are less likely to elicit allergic responses in humans.
	For further details, you may download the "Points to Consider" document from the World Wide Web at the following address:
	http://www.fda.gov/cber/points.htm

Cloning into $pVAX1^{\odot}$

Introduction	A diagram is provided on the next page to help you design a cloning strategy for ligating your gene of interest into pVAX1. General considerations for transformation are listed below.			
General Molecular Biology Techniques	For help with DNA ligation, <i>E. coli</i> transformation, restriction enzyme analysis, DNA sequencing, and DNA biochemistry, please refer to <i>Molecular Cloning: A Laboratory Manual</i> (Sambrook <i>et al.</i> , 1989) or <i>Current Protocols in Molecular Biology</i> (Ausubel <i>et al.</i> , 1994).			
<i>E. coli</i> Strain for Transformation	Many <i>E. coli</i> strains are suitable for the propagation of this vector, including TOP10 (Catalog no. C610-00) or DH5a TM -T1 ^R . We recommend that you propagate vectors containing inserts in <i>E. coli</i> strains that are recombination deficient ($recA^1$) and endonuclease A deficient ($endA$).			
	For your convenience, TOP10 and DH5a TM -T1 ^R <i>E. coli</i> are competent or electrocompetent (TOP10 only) cells in a Or Invitrogen.	e available as c ne Shot [®] forma	hemically at from	
	Item	Quantity	Catalog no.	
	One Shot [®] TOP10 (chemically competent cells)	21 x 50 µl	C4040-03	
	One Shot [®] TOP10 Electrocomp (electrocompetent cells)	21 x 50 µl	C4040-52	
	One Shot [®] DH5a [™] -T1 ^R MAX Efficiency [®] (chemically competent cells)	21 x 50 µl	12297-016	
Transformation Method	You may use any method of your choice for transformation. Chemical transformation is the most convenient for most researchers. Electroporation is the most efficient and the method of choice for large plasmids.			
Maintenance of pVAX1	To propagate and maintain the pVAX1 plasmid, resuspend the vector in 20 μ l sterile water to prepare a 1 μ g/ μ l stock solution. Store the stock solution at -20°C.			
Use this stock solution to transform a $recA^1$, $endA E$. $coli$ strain like TOP10, D T1 ^R , or equivalent. Select transformants on LB plates containing 50 µg/ml kana sure to prepare a glycerol stock of your plasmid-containing <i>E</i> . <i>coli</i> strain for los storage (see page 3).			nl kanamycin. Be	
Cloning Considerations	pVAX1 is a nonfusion vector. Your insert must contain a Kozak translation initiation sequence and an initiation codon (ATG) for proper initiation of translation (Kozak, 1987; Kozak, 1991; Kozak, 1990). An example of a Kozak consensus sequence is provided below. Please note that other sequences are possible (see references above), but the G or A at position -3 and the G at position +4 are the most critical (shown in bold). The ATG initiation codon is shown underlined.			
	(G/A)NN <u>ATG</u> G			
	Your insert must also contain a stop codon for proper termination of your gene. Please note that the <i>Xba</i> I site contains an internal stop codon (TC <u>TAG</u> A).			

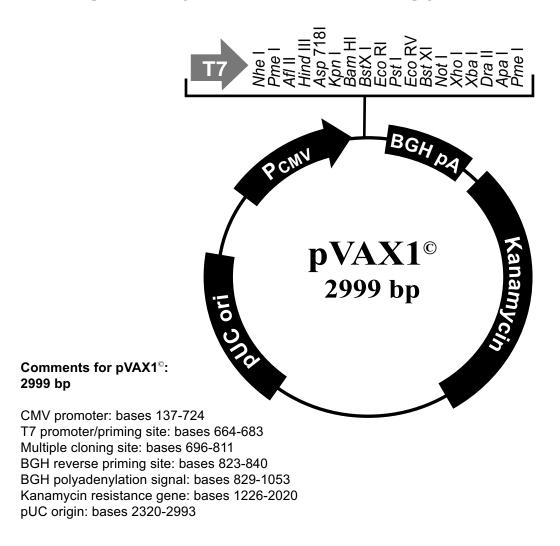
continued on next page

Cloning into pVAX1[©], continued

Multiple Cloning
Site of pVAX1Below is the multiple cloning site for pVAX1. Restriction sites are labeled to indicate
the cleavage site. The multiple cloning site has been confirmed by sequencing and
functional testing. The complete sequence may be downloaded from our web site
(http://www.invitrogen.com) or from Technical Service (see page 8).

6.61		moter/priming site		Nhe I		Hind III Asp718 I
661	AATTAATACG	ACTCACTATA	GGGAGACCCA	AGCTGGCTAG	CGTTTAAACT	TAAGCTTGGT
	Kpn I Ban	1	1	* EcoR I	Pst I EcoR V	BstX I* Not
721	ACCGAGCTCG	GATCCACTAG	TCCAGTGTGG	TGGAATTCTG	CAGATATCCA	GCACAGTGGC
	Xho I	Xba I Dra II	Apa I Pme I*		BGH Reve	rse priming site
781	ggccgctcga	GTC <u>TAG</u> AGGG stop codon	CCCGTTTAAA	CCCGCTGATC	AGCCTCGACT	GTGCCTTCTA
841	GTTGCCAGCC	ATCTGTTGTT	TGCCCCTCCC	CCGTGCCTTC	CTTGACCCTG	GAAGGTGCCA
		BGH polya	denylation signal			
901	CTCCCACTGT	CCTTTCCTAA	TAAAATGAGG	AAATTGCATC		
*Please	note that there are	two <i>Pme</i> I sites a	nd two <i>BstX</i> I site	es in the polylinker		
	formation of on Mixture	(e.g. TOP10, D	0 H5 α) and select c	into a competent <i>r</i> on LB plates conta presence and orien	ining 50 μg/ml ka	namycin. Select
RECO,		primers (Catalo cloned in the pr codon. See the	og nos. N560-02 a roper orientation f diagram above for	e your construct w nd N575-02, respe for expression and r the sequences an from Invitrogen in	ectively) to confirm that it contains an d location of the p	n that your gene is ATG and a stop
-	ring a rol Stock			rect clone, purify t good idea to keep		ke a glycerol stock our plasmid at -
	 Streak the original colony out for single colonies on an LB plate containing 50 μg/ml kanamycin. Incubate the plate at 37°C overnight. 				containing	
• Isolate a single kanamycin.		ngle colony and inoculate into 1-2 ml of LB containing 50 μ g/ml .				
		• Grow the c	culture to mid-log	phase ($OD_{600} = 0$.	5-0.7).	
		• Mix 0.85 r	nl of culture with	0.15 ml of sterile §	glycerol and transf	er to a cryovial.
		• Store at -8	0°C.			

Transient Transfection


Introduction	Once you have verified that your gene is cloned in the correct orientation and contains an initiation ATG and a stop codon, then you are ready to transiently transfect your mammalian cell line of choice to check for protein expression. We recommend that you include the positive control vector and a mock transfection (negative control) to evaluate your results.		
Plasmid Preparation	Plasmid DNA for transfection into eukaryotic cells must be very clean and free from phenol and sodium chloride. Contaminants will kill the cells, and salt will interfere with lipids, decreasing transfection efficiency. We recommend isolating plasmid DNA using the S.N.A.P. TM MiniPrep Kit (10-15 μ g DNA, Catalog no. K1900-01), the S.N.A.P. TM MidiPrep Kit (10-200 μ g DNA, Catalog no. K1910-01), or CsCl gradient centrifugation.		
Methods of Transfection	For established cell lines (e.g. HeLa), please consult original references or the supplier of your cell line for the optimal method of transfection. Follow exactly the protocol for your cell line. Pay particular attention to medium requirements, when to pass the cells, and at what dilution to split the cells. Further information is provided in <i>Current Protocols in Molecular Biology</i> (Ausubel <i>et al.</i> , 1994).		
	Methods for transfection include calcium phosphate (Chen and Okayama, 1987; Wigler <i>et al.</i> , 1977), lipid-mediated (Felgner <i>et al.</i> , 1987; Felgner <i>et al.</i> , 1989), and electroporation (Chu <i>et al.</i> , 1987; Shigekawa and Dower, 1988). Invitrogen offers the Calcium Phosphate Transfection Kit (Catalog no. K2780-01) and a large selection of reagents for transfection. For more information on the reagents available, please visit our World Wide Web site (<u>www.invitrogen.com</u>) or call Technical Service (see page 8).		
Positive Control	pVAX1/ <i>lacZ</i> is provided as a positive control vector for mammalian transfection and expression (see page 7). It may be used to optimize transfection conditions for your cell line. The gene encoding β -galactosidase is expressed in mammalian cells under the control of the CMV promoter. A successful transfection will result in β -galactosidase expression that can be easily assayed (see below).		
Assay for β-galactosidase Activity	You may assay for β -galactosidase expression by activity assay using cell-free lysates (Miller, 1972) or by staining the cells for activity. Invitrogen offers the β -Gal Assay Kit (Catalog no. K1455-01) and the β -Gal Staining Kit (Catalog no. K1465-01) for fast and easy detection of β -galactosidase expression.		

Appendix

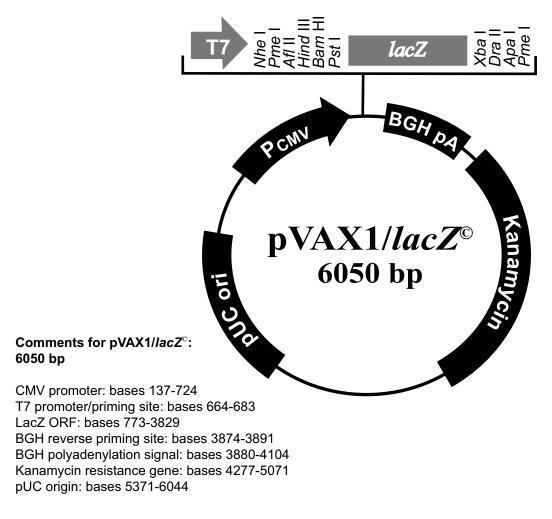
pVAX1[©] Vector

Map of pVAX1

The figure below summarizes the features of the pVAX1 vector. The sequence for pVAX1 is available for downloading from our World Wide Web site (http://www.invitrogen.com) or from Technical Service (see page 8).

continued on next page

pVAX1[©] Vector, continued


Features of pVAX1

pVAX1 (2999 bp) contains the following elements. All features have been functionally tested.

Feature	Benefit
Human cytomegalovirus (CMV) immediate-early promoter/enhancer	Permits efficient, high-level expression of your recombinant protein (Andersson <i>et al.</i> , 1989; Boshart <i>et al.</i> , 1985; Nelson <i>et al.</i> , 1987)
T7 promoter/priming site	Allows for <i>in vitro</i> transcription in the sense orientation and sequencing through the insert
Multiple cloning site	Allows insertion of your gene and facilitates cloning
BGH reverse priming site	Permits sequencing through the insert
Bovine growth hormone (BGH) polyadenylation signal	Efficient transcription termination and polyadenylation of mRNA (Goodwin and Rottman, 1992)
Kanamycin resistance gene	Selection of vector in <i>E. coli</i> (Davies and Smith, 1978)
pUC origin	High-copy number replication and growth in <i>E. coli</i> (Bolivar <i>et al.</i> , 1977; Bolivar <i>et al.</i> , 1977)

pVAX1/*lac*Z[©] Map

Description	pVAX1/ <i>lac</i> Z is a 6050 bp control vector containing the gene for β -galactosidase. The vector was constructed by cloning a 3.1 kb <i>Pst</i> I- <i>Xba</i> I fragment containing the <i>lacZ</i> gene into the <i>Pst</i> I- <i>Xba</i> I site of pVAX1.		
Map of Control Vector	The figure below summarizes the features of the pVAX1/ <i>lacZ</i> vector. The complete nucleotide sequence for pVAX1/ <i>lacZ</i> is available for downloading from our World Wide Web site (http://www.invitrogen.com) or by contacting Technical Service. See the next page for more information.		

Technical Service

World Wide Web

Visit the <u>Invitrogen Web Resource</u> using your World Wide Web browser. At the site, you can:

- Get the scoop on our hot new products and special product offers
- Subscribe to InvitroWireTM, our individually-tailored electronic news service
- View and download vector maps and sequences
- Download manuals in Adobe[®] Acrobat[®] (PDF) format
- Explore our catalog with full color graphics
- Obtain citations for Invitrogen products
- Post a question at one of our many user forums
- Request catalog and product literature

Once connected to the Internet, launch your web browser (Netscape 3.0 or newer), then enter the following location (or URL):

http://www.invitrogen.com

...and the program will connect directly. Click on underlined text or outlined graphics to explore. Don't forget to put a bookmark at our site for easy reference!

Phone and E-mail If you need technical information or help, please e-mail, call, or fax us:

Location	E-mail	Telephone/Fax
United States	tech_service@invitrogen.com	Voice: 1-800-955-6288
Canada		Fax: 1-760-602-6500
Mexico	tech_service@invitrogen.com	Voice: 01-760-603-7200
South America		Fax: 01-760-602-6500
Europe	tech_service@invitrogen.nl	Voice: 00800 5345 5345 (free)
Africa		Fax: 00800 7890 7890 (free)
Middle East		Voice: +31 (0) 50 5299 299
		Fax: +31 (0) 50 5299 281
Asia	pacific_rim@invitrogen.com	Voice: 01-760-603-7200, x250
Australia		Fax: 01-760-602-6500
India		

Addresses

If you want to write to us, here are our addresses:

U.S. Headquarters: Invitrogen Corporation 1600 Faraday Avenue Carlsbad, CA 92008 USA **European Headquarters:** Invitrogen BV PO Box 2312, 9704 CH Groningen The Netherlands

continued on next page

Technical Service, continued

Limited Warranty

Invitrogen is committed to providing our customers with high-quality goods and services. Our goal is to ensure that every customer is 100% satisfied with our products and our service. If you should have any questions or concerns about an Invitrogen product or service, please contact our Technical Service Representatives at 800-955-6288 extension 2 (U.S. and Canada) or 1-760-603-7200 extension 2 (all others).

Invitrogen warrants that all of its products will perform according to the specifications stated on the certificate of analysis. The company will replace, free of charge, any product that does not meet those specifications. This warranty limits Invitrogen Corporation's liability only to the cost of the product. No warranty is granted for products beyond their listed expiration date. No warranty is applicable unless all product components are stored in accordance with instructions. Invitrogen reserves the right to select the method(s) used to analyze a product unless Invitrogen agrees to a specified method in writing prior to acceptance of the order.

Invitrogen makes every effort to ensure the accuracy of its publications, but realizes that the occasional typographical or other error is inevitable. Therefore Invitrogen makes no warranty of any kind regarding the contents of any publications or documentation. If you discover an error in any of our publications, please report it to our Technical Service Representatives.

Invitrogen assumes no responsibility or liability for any special, incidental, indirect or consequential loss or damage whatsoever. The above limited warranty is sole and exclusive. No other warranty is made, whether expressed or implied, including any warranty of merchantability or fitness for a particular purpose.

- Andersson, S., Davis, D. L., Dahlbäck, H., Jörnvall, H., and Russell, D. W. (1989). Cloning, Structure, and Expression of the Mitochondrial Cytochrome P-450 Sterol 26-Hydroxylase, a Bile Acid Biosynthetic Enzyme. J. Biol. Chem. 264, 8222-8229.
- Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K. (1994). Current Protocols in Molecular Biology (New York: Greene Publishing Associates and Wiley-Interscience).
- Bolivar, F., Rodriguez, R. L., Betlach, M. C., and Boyer, H. W. (1977). Construction and Characterization of New Cloning Vehicles. I. Ampicillin-Resistant Derivatives of the Plasmid pMB9. Gene 2, 75-93.
- Bolivar, F., Rodriguez, R. L., Greene, P. J., Betlach, M. C., Heyneker, H. L., and Boyer, H. W. (1977). Construction and Characterization of New Cloning Vehicles. II. A Multipurpose Cloning System. Gene 2, 95-113.
- Boshart, M., Weber, F., Jahn, G., Dorsch-Häsler, K., Fleckenstein, B., and Schaffner, W. (1985). A Very Strong Enhancer is Located Upstream of an Immediate Early Gene of Human Cytomegalovirus. Cell 41, 521-530.
- Chen, C., and Okayama, H. (1987). High-Efficiency Transformation of Mammalian Cells by Plasmid DNA. Mol. Cell. Biol. 7, 2745-2752.
- Chu, G., Hayakawa, H., and Berg, P. (1987). Electroporation for the Efficient Transfection of Mammalian Cells with DNA. Nuc. Acids Res. *15*, 1311-1326.
- Davies, J., and Smith, D. I. (1978). Plasmid-Determined Resistance to Antimicrobial Agents. Ann. Rev. Microbiol. 32, 469-518.
- Felgner, P. L., Gadek, T. R., Holm, M., Roman, R., Chan, H. W., Wenz, M., Northrop, J. P., Ringold, G. M., and Danielsen, M. (1987). Lipofectin: A Highly Efficient, Lipid-mediated DNA-transfection Procedure. Proc. Natl. Acad. Sci. USA 84, 7413-7417.
- Felgner, P. L., Holm, M., and Chan, H. (1989). Cationic Liposome Mediated Transfection. Proc. West. Pharmacol. Soc. *32*, 115-121.
- Goodwin, E. C., and Rottman, F. M. (1992). The 3'-Flanking Sequence of the Bovine Growth Hormone Gene Contains Novel Elements Required for Efficient and Accurate Polyadenylation. J. Biol. Chem. 267, 16330-16334.
- Kozak, M. (1987). An Analysis of 5'-Noncoding Sequences from 699 Vertebrate Messenger RNAs. Nuc. Acids Res. 15, 8125-8148.
- Kozak, M. (1991). An Analysis of Vertebrate mRNA Sequences: Intimations of Translational Control. J. Cell Biol. 115, 887-903.
- Kozak, M. (1990). Downstream Secondary Structure Facilitates Recognition of Initiator Codons by Eukaryotic Ribosomes. Proc. Natl. Acad. Sci. USA 87, 8301-8305.
- Miller, J. H. (1972). Experiments in Molecular Genetics (Cold Spring Harbor, New York: Cold Spring Harbor Laboratory).
- Nelson, J. A., Reynolds-Kohler, C., and Smith, B. A. (1987). Negative and Positive Regulation by a Short Segment in the 5'-Flanking Region of the Human Cytomegalovirus Major Immediate-Early Gene. Mol. Cell. Biol. 7, 4125-4129.

References, continued

- Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual, Second Edition (Plainview, New York: Cold Spring Harbor Laboratory Press).
- Shigekawa, K., and Dower, W. J. (1988). Electroporation of Eukaryotes and Prokaryotes: A General Approach to the Introduction of Macromolecules into Cells. BioTechniques *6*, 742-751.
- Wigler, M., Silverstein, S., Lee, L.-S., Pellicer, A., Cheng, Y.-C., and Axel, R. (1977). Transfer of Purified Herpes Virus Thymidine Kinase Gene to Cultured Mouse Cells. Cell *11*, 223-232.

©1998-2001 Invitrogen Corporation. Reproduction forbidden without permission.