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Abstract

Methods for reliable synthesis of long genes offer great promise for novel protein synthesis via

expression of synthetic genes. Current technologies use computational methods for design

of short oligos, which can then be reliably synthesized and assembled into the desired target

gene. A precursor to this process is optimization of the gene sequence for improved protein

expression. In this thesis, we provide the first results on the computational complexity of

oligo design for gene synthesis. For collision-oblivious oligo design – when mishybridizations

between oligos are ignored – we give an efficient dynamic programming algorithm. We show

that an abstraction of the collision-aware oligo design problem is NP-hard. We extend our

collision-oblivious algorithm to achieve collision-aware oligo design, when the target gene

can be partitioned into independently-assembled segments. We propose additional algo-

rithms for gene optimization and demonstrate their utility for collision-aware design. All

methods are evaluated on a large biological gene set.

Keywords: gene synthesis; oligo design; gene engineering; codon optimization; complexity
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“The genes are the master programmers, and they are programming for their lives.”

— Richard Dawkins, The Selfish Gene

v

http://www.synthesisgene.com ShineGene



Acknowledgments

I have many people to acknowledge and for that I am lucky. First and foremost, I would

like thank my supervisors, Anne Condon and Arvind Gupta. Thank you Anne for your

constant support, understanding, generosity with your time and for helping me explore very

interesting research areas and problems. It has been a truly wonderful experience working

with you. Thank you Arvind for all your support during the past two years, whether

research related or the excellent advice you have always given to me, with my best interests

in mind. For that I am truly thankful. Thanks to you both for being great mentors, both

professionally and personally.

Thank you to Holger Hoos for being my unofficial third supervisor, for the great con-

versations and ongoing advice. Thanks to Ramesh Krishnamurti for examining this thesis

and his feedback. I would like to thank all members of the SFU COMBI lab, in particular,
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Chapter 1

Background

Gene synthesis – efficient construction of long protein-coding or RNA-coding DNA strands –

is emerging as an important technology for genomics and synthetic biology. Synthetic genes

can be used to express target proteins of interest in a host cell, making it possible to produce

protein fragments of a size manageable for structural analysis, to understand how variations

in protein sequence affects binding properties of the protein, and to design novel proteins [5].

Use of a designed synthetic gene which codes for the target protein, rather than a naturally

occurring gene, can also enhance the gene’s expression level in the host, for example by

matching the codon bias with that of the host in which the gene is expressed [15] or by

removing introns from the gene [17]. Synthetic genes can also be designed to be resistant to

RNA interference in the cell [21]. While most existing studies have focused on the design

of a single gene, need has been demonstrated for the ability to cheaply synthesize multiple

genes for use in the study of regulatory pathways [39].

Recently, Lartigue et. al have taken a step past synthetic gene design, towards synthesis

of entire genomes [23]. In their study, the authors introduced an entire circular genome

of the bacterium Mycoplasma mycoides large colony (LC) into a cell of the bacterium My-

coplasma capricolum. Daughter cells effectively became identical to the donor bacterium,

both genetically and phenotypically. In an article featuring the achievement, Pennisi [27]

states the group is among several who are attempting to assemble a minimum genome to

support life, with the end goal of adding desirable genes, such as ones for making biofuels.

Although there are many factors which will need to be considered to achieve this ambitious

goal, one required component is a reliable means for gene synthesis, which can scale to

synthesis of entire genomes.

1
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CHAPTER 1. BACKGROUND 2

Several methods for synthesis of small genes or gene fragments (ranging from less than

a hundred up to a thousand or so bases in length) are currently in use. For example, in

assembly PCR [35], short oligos are selected which cover the desired gene duplex, with

overlaps between successive oligos on the complementary (so-called sense and anti-sense)

strands of the duplex. The oligos are synthesized separately, and are pooled in solution.

Assembly of the oligos is achieved via hybridization of overlapping oligos on the sense and

anti-sense strands. PCR extension is used to fill in any gaps in the assembly, and to amplify

the product. Emerging technologies aim to significantly improve the scale and reliability of

gene synthesis, enabling synthesis of genes of length 10kb (kilobases) and ultimately up to

100kb, as well as multiplexed synthesis of sets of genes [39]. These technologies typically

avoid the traditional high cost of individual oligo synthesis, by the use of parallel synthesis

of primer-tagged oligos on photolithographic microarrays, followed by amplification and

cleavage of primers. Further array-based hybridization techniques are used to identify and

remove oligos with incorrect base composition due to synthesis errors.

The success of all of these methods relies in part on properties of the selected short oligos.

This leads to a computational oligo design problem: given an input DNA duplex, select oligos

from both the sense and antisense strands, so as to satisfy the following conditions. First, the

oligos should cover the duplex – if oligos are ordered by distance from one end of the duplex,

they should alternate between sense and antisense strands, with some overlap between

successive oligos. Second, the oligos should yield no synthesis and assembly errors: an oligo

should not fold on itself or stably hybridize to any oligo, other than those which it overlaps

in the covering of the duplex. As the scale of gene synthesis grows, the computational design

of short oligos becomes more critical to the success of gene synthesis technologies. Typically,

there is some flexibility in the oligo lengths, and so there are exponentially many possible

designs.

1.1 Existing Gene Synthesis Algorithms

There are already many algorithms and software packages available for oligo design [5, 17, 19,

29, 30, 40, 41]. These methods vary in the types of design criteria they support, and in the

underlying design optimization techniques (as well as in other aspects not considered further

here, such as the user interface). However, the literature provides little or no insight on the

computational complexity of the many interesting variations of the problem of designing

http://www.synthesisgene.com ShineGene



CHAPTER 1. BACKGROUND 3

oligos for gene synthesis. Moreover, the techniques reported in the literature are all heuristic

in nature, but there are no empirically-obtained insights on the relative efficiency of the

design techniques used. Because of this, we focus next on the most common design criteria

that have been proposed in the literature.

To ensure reliable synthesis and assembly, designed oligos which cover a DNA duplex

should satisfy one or more of the following criteria:

Limited length range [5, 39, 19, 29, 30, 40, 43]: The length of each oligo should fall within a

short specified range (typically between ±4 and ±10 nucleotides from a given length, which

can be from 40 to 70 nucleotides); or a maximum length is specified.

Structure-free [17, 39, 19]: Each selected oligo should not self-hybridize to form secondary

structure that would interfere with the oligo synthesis. If tags, such as primers or restriction

sites, are concatenated to oligos during the synthesis phase (e.g., for amplification purposes),

the oligo-tag concatamers should be structure-free. Various tests of structure-freeness are

used, including detection of palindromic sequences or use of secondary structure prediction

software.

Uniform melting temperature (Tm) [17, 19, 30]: The thermodynamic melting temperature

(Tm) of duplexes formed from successive overlapping oligo fragments should fall within a

narrow range.

Collision-free [39, 30]: Oligos on one strand of the duplex should bind specifically to over-

lapping oligos on the complementary strand, and avoid collisions, whereby a pair of oligos

from different parts of the duplex hybridize stably.

Codon-optimized [39, 19, 40]: Any codon in the input DNA sequence may be replaced by

a codon that codes for the same amino acid, so that the overall frequency of codons is

approximately as specified by the user. Typically, codon optimization is done in order to

create a gene whose codon frequencies (bias) matches those of the host in which the gene

will be expressed. However, other reasons for codon optimization include the design of

oligos that satisfy other design criteria, such as being collision-free [19] and the removal of

restriction sites [40].

Synthon-informed [17, 19]: Jayaraj et al. [19] propose that assembly of a long gene be done

in two phases. First, short oligos are assembled into segments, called synthons. Then, larger

sequences are assembled from synthons. With this approach, selected oligos for the whole

http://www.synthesisgene.com ShineGene



CHAPTER 1. BACKGROUND 4

gene need not be collision free; rather it is is sufficient that with each synthon, selected

oligos are collision free. Similarly, DNAWorks [17] uses simulated annealing to optimize

design of “sections”. Synthon or section boundaries may also shift during optimization

phase, allowing flexibility in the design process.

In Table 1.1, an overview is given, with respect to the above features, of existing programs

found in the literature. We note that certain programs provide additional features, such as

robot automation scripts, graphical user interfaces and overall lab process design, however,

we limit our discussion to those criteria previously listed. Also, there are a number of

software packages available solely for codon optimization. We detail these algorithms and

their features in Chapter 6. Overall, no current software package provides robust algorithms

for the majority of design tasks related to gene synthesis.
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Synthon
Support

Oligo Lengths Codon Optimization Oligo Structure
Detection

Cross-hybridization
Detection

Uniform Tm

DNAWorks [17] Yes user input Yes limited No Yes

Gene2Oligo [29] Yes user input No limited (checks for
palindromes)

limited (checks for
repeats)

Yes

GeMS [19] Yes 40 bases Yes limited (no auto-
matic elimination)

No limited

Protein Fabrication
Automation [5]

No 50-60 bases Yes No No No

Assembly PCR oligo
maker [30]

No 40-70 bases No No No limited (not
automated)

Gene Designer [40] No user designed (no
automated oligo
design)

Yes limited (detects
palindromes)

limited (detects re-
peat regions)

limited (not
automated)

Table 1.1: An overview of features for existing gene synthesis programs.
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CHAPTER 1. BACKGROUND 6

1.2 Thesis Objectives

The objectives of this thesis are threefold. First, we aim to rigorously define the associated

problems involved in gene synthesis. While there have been many proposed algorithms

for these problems, the lack of formal definitions, problem constraints and optimization

criteria make the comparison of methods difficult. Second, given formal definitions of the

problem, we seek to develop algorithms, whenever possible, which are complete. That is,

the algorithms have a guarantee to find an optimal solution (by our definition), if one exists.

Finally, we must ensure any algorithm we develop is efficient. As the need for synthesizing

entire genomes rises, reliable, yet scalable algorithms will be necessary to aid in the design

process.

1.3 Contributions

We now describe the contributions of this thesis, in the order they are discussed:

1. Despite numerous algorithms proposed for the oligo design for gene synthesis prob-

lem, no rigorous definition could be found in the literature. We provide the first

formal problem definitions by distinguishing between two variants, collision-oblivious

and collision-aware oligo design. This problem dichotomy is the first step towards

understanding which design tasks are computationally tractable.

2. A linear time and space dynamic programming algorithm is presented, which is guar-

anteed to find an optimal solution to the collision-oblivious design problem, if one

exists. This is the first algorithm for this problem to have this guarantee. All existing

algorithms rely heavily on heuristics.

3. We present evidence that the collision-aware oligo design problem is NP-hard by

showing the collision-aware string partition problem, one with similar design goals, is

NP-hard. This is the first result on the complexity of this problem.

4. Prompted by evidence that oligo collisions occur infrequently in practice, we present a

simple heuristic algorithm for partitioning an optimal collision-oblivious oligo design

into collision free regions.

5. To date, the most efficient algorithm for optimizing the codon adaptation index value

of a gene [33], under the restriction that forbidden motifs must be removed, is Θ(n2)
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CHAPTER 1. BACKGROUND 7

where n is the length of the sequence [31]. We present a linear time and space algorithm

for this task and provide a proof that the algorithm is correct.

6. Existing algorithms for optimizing the codon bias of a gene, relative to naturally

occurring codon frequencies, and under the restriction that forbidden motifs must be

removed, are all heuristic in nature. We propose a stochastic local search algorithm

for this purpose and provide evidence, both theoretically and empirically, that our

algorithm outperforms the current state-of-the-art.

7. We discuss the utility of designing multiple, homologous gene sequences for the purpose

of collision-aware oligo design. We demonstrate that in practice, it is common that

a collision-oblivious design of a homolog can be partitioned into a less number of

synthons than the design of the original sequence.

1.4 Thesis Outline

A thorough understanding of common constraints related to each variant of the oligo design

problem – collision-oblivious and collision-aware – is necessary to understand the distinc-

tions made in our proposed algorithms. Therefore, we have devoted the whole of Chapter 2

for formal definitions of these problems and to make note of their differences. We detail our

linear time design algorithm for the collision-oblivious problem in Chapter 3. An experi-

mental analysis of the algorithm is conducted on a large biological data set to determine its

effectiveness and runtime efficiency. We end the chapter with an analysis of the frequency

of oligo collision occurring in these collision-oblivious designs. Chapter 4 presents evidence

the collision-aware oligo design problem is intractable in practice, if P 6= NP, by showing

a related problem to be NP-hard. In Chapter 5, we present an algorithm to partition a

collision-oblivious design into a minimal number of collision-free regions. In Chapter 6, we

formally define the problem of codon optimization and note common problem constraints

and optimization criteria. We propose two algorithms to solve different versions of the prob-

lem, while extending one of them to find a set of solutions under an additional maximum

sequence similarity constraint. We end the chapter with a rigorous experimental analy-

sis and demonstrate the utility of codon optimization for the collision-aware oligo design

problem. We discuss the conclusions of this thesis and the potential for future work in

Chapter 7.
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Chapter 2

The Oligo Design for Gene

Synthesis Problem

In this chapter, we formally define the problem of oligo design for gene synthesis, along with

some useful notation. A DNA strand, or oligo, is a string over alphabet {A,C, G, T}. We

consider the left and right ends of the string to represent the 5′ and 3′ ends, respectively, of

the corresponding physical DNA strand. A DNA duplex S consists of two complementary

DNA strands distinguishable by a value σ; Sσ refers to the sense strand when σ = 0 and

the anti-sense strand when σ = 1. The complement S1−σ of DNA strand Sσ is obtained

from Sσ by replacing each A with a T and vice versa, each C with a G and vice versa,

and reversing the resulting string. Thus, for example, the complement of a strand having a

sequence AATGGG is CCCATT. In this manner, for some sense strand S0 = s1s2 . . . s|S|,

we let the oligo O0
a,b denote the substring sa . . . sb and O1

a,b denote the substring sa . . . sb,

the complement of sa . . . sb.

Informally, an oligo design is simply a covering of a DNA duplex by a set of oligos which

alternately overlap between the sense and anti-sense strands. For an example, consider two

potential oligo designs for the same duplex in Fig. 2.1; the top oligo design is ungapped

whereas the bottom design is gapped. Next, we formally define what is an oligo design.

Definition 2.0.1. For a fixed DNA duplex S, a gapped oligo design O is specified by two

strictly monotonically increasing sequences of indices: i1, i
′
1, i2, i

′
2, . . . , ix, i′x and

j1, j
′
1, j2, j

′
2, . . . , jy, j

′
y, such that:

� |x− y| ≤ 1,

8
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TGGCTATCTT

ACCGATAGAATTTTTCTCCTCGATCTTTTTTCCATGTAGTCCTCGGTCGATTTGCGAGAAGATTTTAGAGGCTGCTTCGGT

TGGCTATCTTAAAAAGAGGAGCTAGAAAAAAGGTACATCAGGAGCCAGCTAAACGCTCTTCTAAAATCTCCGACGAAGCCA5' - 

AATTTTTCTCC TTTTTTCCATGT

ATCAGGAGCCAG CGCTCTTCTAAA

TTTTAGAGGCTG

CGACGAAGCCA

TCGATTTGCG

GGAGCTAGAAAAA

 - 3' 

 - 5' 3' - 

GGAGCTAGAAAAA

TCGATTTGCG

TGGCTATCTTAAAAAGA

TTTTTCTCCTCGTACTTTTTTCCATG

AGGTACATCAGG

TAGTCCTCGG

AGCCAGCTAAACGCTCTTCTAA

AGAAGATTTTAGAGG

AATCTCCGAC

CTGCTTCGGT

Ob 

Oa Oc 

Figure 2.1: An ungapped oligo design (top) and a gapped oligo design (bottom) are shown
for the same input duplex S. An oligo design must have at at least one oligo covering each
position in S and the oligos alternately overlap between strands. For ungapped designs,
there are no gaps between successive oligos on the same strand. The oligo Ob has designed
hybridizations with oligos Oa and Oc as they share a complementary overlap region.

� min(i1, j1) = 1 and max(ix, jy) = |S|,

� the indices from the sequences alternately overlap in the following manner:

– if i1 = 1 then x ≥ y and

- ik < jk ≤ i′k < j′k, 1 ≤ k ≤ y

- jy < ix ≤ j′y < i′x, if x > y

– if j1 = 1 then y ≥ x and

- jk < ik ≤ j′k < i′k, 1 ≤ k ≤ x

- ix < jy ≤ i′x < j′y, if y > x

The set of oligos corresponding to O is

set(O) ={O0
ik,i′k

= sik
. . . si′k

| 1 ≤ k ≤ x}

∪ {O1
jk,j′k

= sjk
. . . sj′k

| 1 ≤ k ≤ y}.

An ungapped oligo design is a restricted version of a gapped oligo design where ik = i′k−1+1,

1 < k ≤ x, and jk = j′k−1 + 1, 1 < k ≤ y.

The remaining definitions are with respect to a fixed DNA duplex S and oligo design O
for S.
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CATTAATCGCA

CGTTATGGTCCCT

GGGATCGATTCATT

GCAAACGTCAAATAATTACGCGTAAGTAA

5'5' 3'TTACCGCTAAGTAA

TTACCGCTAAGTAA

GGGATCGATTCATT 3'5'

ACGCTAATTAC 5'3'

5' 

3' 

3' 

5' 

Oi Oj Ok

Figure 2.2: An oligo design containing an oligo likely to self-hybridize (bottom right) and a
pair of oligos which potentially form an oligo collision (bottom left). The melting temper-
ature of the MFE structure of Ok and the MFE duplex formed by Oi and Oj is denoted as
Tm(Ok) and Tm(Oi, Oj), respectively.

Definition 2.0.2. A designed hybridization is a pair of oligos Oσ
a,b, O

1−σ
c,d ∈ set(O) where

either a < c ≤ b < d or c < a ≤ d < b. These oligos share a complementary overlap region

(see Fig. 2.1).

Let Tm(O,O′) and Tm(O) be the melting temperatures of the MFE (minimum free

energy) duplex secondary structure formed by oligos O and O′, and of the secondary struc-

ture formed by O alone, respectively (see Fig. 2.2). Let Tm(Oσ
a,b ∩ O1−σ

c,d ) be the melting

temperature of the complementary overlap region associated with a designed hybridization

between Oσ
a,b and O1−σ

c,d (see Fig. 2.3).

Finally, for any oligo O ∈ set(O), let Tmin(O) and Tmin(O) be the minimum of all the

melting temperatures of designed hybridizations involving O, and overall in O, respectively.

An example is given in Fig. 2.3.

Definition 2.0.3. An oligo design O is:

� length range limited if all oligos in set(O) have length in the range [lmin, lmax]

� structure free if for all oligos O ∈ set(O), Tm(O) ≤ tsh, the threshold for self hy-

bridization

� designed Tm satisfied if for all oligo pairs (Oσ
a,b, O

1−σ
c,d ) ∈ O having a designed hy-

bridization, tmin ≤ Tm(Oσ
a,b ∩O1−σ

c,d ) ≤ tmax, where tmin and tmax are the threshold of

the minimum and maximum overlap region melting temperature, respectively
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ACTGGCTAGCATG

TACGGCTAGCA

TCGTATGGTCCCT

GGGATCGATTCATT CAAGGTATAGGCTAG

GCAAACGTCAAATGT

t1 t4

ACTGGCTAGCATG
TACGGCTAGCA GGGATCGATTCATT

GCAAACGTCAAATGT

t1 t2 t3 t4 t5

Oi

Oj

Figure 2.3: The complementary overlap regions are shown for each designed hybridization
in the oligo design O. In this design Tm(Oi ∩ Oj) = t4, Tmin(Oi) = min(t3, t4), and
Tmin(O) = min(t1, t2, t3, t4, t5).

Definition 2.0.4. Given length range [lmin, lmax] and temperatures tsh, tmin and tmax, O
is valid if and only if it is length range limited, structure free and designed Tm satisfied. Let

D(S) be the set of all valid oligo designs for S.

Definition 2.0.5. Given threshold tcol, O is collision free if, for any pair of oligos (O,O′)

that do not have a designed hybridization, Tm(O,O′) + tcol ≤ min(Tmin(O), Tmin(O′)). If

Tm(O,O′) + tcol > min(Tmin(O), Tmin(O′)), we say that (O,O′) is an oligo collision.

Note 2.0.6. An alternative definition is that for any pair of oligos (O,O′) that do not have

a designed hybridization, Tm(O,O′) + tcol ≤ Tmin(O). The latter definition is a stronger

condition than the former and we say it evaluates for oligo collisions in the global sense.

Informally, a valid design is a requirement of any potential oligo design solution. There-

fore, given that the constraints must be satisfied, we may choose to define some objective

score function, g, of oligo designs, to optimize one or more design criteria. For example,

in the remainder of this study, we have chosen to define g(O) = tmax − Tmin(O) in order

to minimize the range of melting temperatures of designed overlap regions. We could have

similarly defined g(O) = Tmax(O)− tmin to achieve a similar effect. However, the definition

of g is not restricted to design criteria alone. Consider the case where there is a known cost

per nucleotide in the gene synthesis process. Then, of all possible valid designs, it may be

beneficial to define g such that it would choose the design which requires the least number

of nucleotides to be synthesized. This could be achieved by setting g(O) = ΣO∈O|O|, where

|O| is the length of the oligo O.
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We now formally define the collision oblivious and collision aware oligo design problems.

Collision Oblivious Oligo Design for Gene Synthesis (CO-ODGS)

Instance: DNA duplex S, oligo length range [lmin, lmax], maximum melting temperature of

self-hybridization, tsh, and minimum and maximum overlap region melting temperatures,

tmin and tmax.

Problem: Find a valid oligo design O∗ for S, such that g(O∗) = min{g(O′)|O′ ∈ D(S)}
where g is some objective score function of oligo designs. O∗ is an optimal design with

respect to g.

Note 2.0.7. Although g(O) is defined above, and in the remainder of this study, as an

objective function to be minimized, it could also be defined to maximize some appropriate

measure, if required.

Collision Aware Oligo Design for Gene Synthesis (CA-ODGS)

The collision aware oligo design for gene synthesis problem (CA-ODGS) is defined as the

CO-ODGS problem with the added constraint that the design must also be collision free.
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Chapter 3

Collision Oblivious Oligo Design

Algorithms

In this chapter, we first describe two dynamic programming algorithms that are guaranteed

to find an optimal oligo design, if one exists, with respect to some objective evaluation

function g for any instance of the CO-ODGS problem detailed in Chapter 2. Note that

the algorithms proposed make no attempt to ensure collision-free oligo designs, a necessary

condition of the CA-ODGS problem. We start by describing an algorithm for ungapped

oligo designs, report on its space and time complexity, and show how the algorithm can be

generalized to handle the case of gapped designs. We conclude the chapter with an extensive

experimental analysis where we evaluate the efficacy and efficiency of both algorithms for

various design parameters and investigate to what degree oligo collisions arise in collision

oblivious designs.

3.1 Ungapped Oligo Design Algorithm

In Eqn. (3.1), Dσ
i′,j′ determines the score of the optimal design with respect to function g′,

having an oligo ending at position j′, on strand σ, and another ending at position i′ on the

opposite strand (see Fig. 3.1). Intuitively, the recurrence evaluates all possible values of j,

denoting the oligo Oσ
j,j′ , for 1) constraint satisfaction, and 2) optimization with respect to

the scoring function g′. Oligo Oσ
j,j′ is first checked to ensure it is structure free with respect

to the self hybridization melting temperature threshold tsh (line 1). The base case is reached

13
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GGGATCGATTCATT

j'j

i'

(j-1)'

1 n

GGGATCGATTCATT

j'j

i'

(j-1)'

1 n
lmax

Figure 3.1: The ungapped recurrence (top) attempts to find the best starting position j for
an oligo ending at j′, given that there is an oligo ending at i′ on the opposite strand. Position
(j − 1)′ immediately precedes j in an ungapped design. The gapped recurrence (bottom)
also considers the best position for the oligo ending at (j − 1)′, given that it overlaps the
oligo ending at position i′.

when j = 1 and the oligo is structure free (line 2). In the recursive case, j 6= 1, the new

complementary overlap region introduced (sj . . . si′) is evaluated to ensure it is designed Tm

satisfied (lines 3,4). If all constraints have been satisfied, then the score is evaluated and

defined to be the larger of D1−σ
j−1,i′ , the score of the optimal design with an oligo ending at

position j − 1 on strand σ and one ending at position i′ on strand 1 − σ, and of the new

score associated with oligo Oσ
j,j′ , evaluated by g′.

Dσ
i′,j′ = minmax(j′−lmax+1,1)≤j≤min(j′−lmin+1,i′)

∞ , if Tm(Oσ
j,j′) > tsh

0 , if j = 1 ∧ Tm(Oσ
j,j′) ≤ tsh

∞ , if j 6= 1 ∧ Tm(Oσ
j,i′ ∩O1−σ

j,i′ ) > tmax

∞ , if j 6= 1 ∧ Tm(Oσ
j,i′ ∩O1−σ

j,i′ ) < tmin

max(D1−σ
j−1,i′ , g

′(j, i′)) , otherwise


(3.1)

g′(j, i′) = tmax − Tm(O0
j,i′ ∩O1

j,i′) (3.2)
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D∗
j′ = min

j′−lmax<i′<j′

{
min

0≤σ≤1

{
Dσ

i′,j′
}}

(3.3)

In this particular formulation, we chose to optimize the range of designed overlap melting

temperatures by defining our objective optimization function g(O) = tmax − Tmin(O). In

order to determine the effect to the score when choosing a particular oligo, Oσ
j,j′ , we have

defined a function g′ with respect g (see Eqn. (3.2)). We reiterate here that g could be

defined to optimize for another design criteria if desired. Likewise, additional constraints

could be imposed and existing ones removed, dependent on the application. Furthermore,

while we have defined each hybridization related constraint in terms of melting temperature

these could easily be expressed in terms of Gibbs free energy change.

In Eqn. (3.3), D∗
j′ defines the optimal score of a design of the prefix of S of length j′.

With respect to j′, it evaluates all possible placements of an oligo ending at some position

i′ on the opposite strand. Therefore, for some sequence S, having length |S|, the optimal

design score is D∗
|S|.

3.1.1 Time and Space Complexity

We assume that satisfaction of all design constraints can be calculated in constant time

(which depends on lmin and lmax). Let S be the DNA duplex of the problem instance and

n = |S|. In the case of the ungapped algorithm, for each possible pair (i′, j′) ∈ {(i′, j′) | 1 <

i′, j′ ≤ |S| ∧ 1 ≤ |j′ − i′| < lmax}, every possible j must be evaluated to determine the score

contributed by oligo Oσ
j,j′ . There are at most lmax− lmin +1 possible placements of j, given

any (i′, j′). Therefore, the ungapped algorithm runs in time O((lmax−lmin)·lmax ·n) = O(n),

as lmin and lmax are design constants. An entry must be stored in the dynamic programming

table for every (i′, j′), 1 ≤ |i′ − j′| < lmax, for both strands, therefore O(lmax · n) = O(n)

space is needed. If only a score is required, the space can be reduced to O(1).

3.2 Gapped Oligo Design Algorithm

Unlike the special case of ungapped designs where (j − 1)′ = j − 1, in a gapped design the

previous oligo on strand σ could end at a number of valid positions, denoted as position

(j− 1)′, given that an oligo covers position (j− 1)′ on strand 1−σ. This difference between

gapped and ungapped designs is illustrated in Fig. 3.1. Therefore, to generalize Eqn. (3.1)
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for gapped designs, replace D1−σ
j−1,i′ in the recursive case, with:

min
i′−lmax<(j−1)′<j

{
D1−σ

(j−1)′,i′

}
(3.4)

For completeness, we list the full recurrence for finding an optimal gapped oligo design

with respect to an optimization function g′.

D
σ
i′,j′ = minmax(j′−lmax+1,1)≤j≤min(j′−lmin+1,i′)

∞ , if Tm(Oσ
j,j′) > tsh

0 , if j = 1 ∧ Tm(Oσ
j,j′) ≤ tsh

∞ , if j 6= 1 ∧ Tm(Oσ
j,i′ ∩O1−σ

j,i′ ) > tmax

∞ , if j 6= 1 ∧ Tm(Oσ
j,i′ ∩O1−σ

j,i′ ) < tmin

max(mini′−lmax<(j−1)′<j

{
D

1−σ
(j−1)′,i′

}
, g′(j, i′)) , otherwise


(3.5)

3.2.1 Time and Space Complexity

Again we assume that satisfaction of all design constraints can be calculated in constant

time (which depends on lmin and lmax) and let S be the DNA duplex of the problem instance

and n = |S|. For the gapped design algorithm the space remains the same as the ungapped

algorithm, O(n). As there are at most lmax possible placements of (j−1)′, in contrast to one

valid position in the ungapped case, the time complexity is O(lmax · (lmax− lmin) · lmax ·n) =

O(n).

3.3 Experimental Analysis

In Sect. 3.3.2 we ask the following questions. First, for various values of tmax, how effective

is the gapped and ungapped collision oblivious algorithm in finding valid designs, not nec-

essarily collision free, on real data? Second, how efficient is the runtime performance of the

algorithms? Finally, of the valid designs found by the gapped algorithm, to what degree do

collisions arise? Following a short description of our data set and implementation details,

we report the results of our analyses in the rest of this section.
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Input: A DNA duplex S, a design goal g, and design parameters gapped, lmin, lmax, tsh,
tmin and tmax

Output: designScore – the score of an optimal design, or ∞ if one does not exist

// first, fill in the D matrix
for j′ ← 1 to |S| do

for i′ ← Max(j′ − lmax + 1, 1) to j′ − 1 do
for σ ← 0 to 1 do

Dσ,j′,i′ ←∞;
score←∞;
for j ← Max(j′ − lmax + 1, 1) to Min(j′ − lmin + 1, i′) do

if TmSelfHybridization(S, σ, j, j′) > tsh then continue;

if j = 1 then /* base case */
score← 0;

else /* recursive case */
tm← TmOverlapRegion(S, j, i′);
if tm > tmax or tm < tmin then continue;

prevScore←∞;
jPrevStart← j − 1;
if gapped = true then jPrevStart← i− lmax + 1;

for j′prev ← jPrevStart to j − 1 do
prevScore← Min (prevScore, D1−σ,i′,j′

prev
);

end
if g = Minimize Tm Range then

score← Max(tmax − tm, prevScore);
else if g = Minimize Base Count then

score← prevScore + j′ − j + 1;
end

end
if score < Dσ,j′,i′ then Dσ,j′,i′ ← score;

end
end

end
end

// next, find the best score for designs having an oligo end at position |S|
designScore←∞;
j′ ← |S|;
for i′ ← j′ − lmax + 1 to j′ − 1 do

for σ ← 0 to 1 do
if Dσ,j′,i′ < designScore then designScore← Dσ,j′,i′ ;

end
end
return designScore;

Algorithm 3.1: Collision oblivious dynamic programming algorithm. Pseudo-code is
given for determining the optimal score of both gapped and ungapped oligo designs,
for two different design goals.
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3.3.1 Experimental Environment

Data Set

Throughout this thesis, we use a filtered set of the 3,891 CDS (coding DNA sequence) regions

of the GENECODE subset of the Encode dataset [38] (version hg17 NCBI build 35). This

curated dataset comprises approximately 1% of the human genome and is representative of

several its characteristics such as distribution of gene lengths and GC composition (54.31%).

After filtering any sequences less than 75 bases in length, the remaining 3,157 CDS regions

range in length from 75 to 8186 bases, averaging 173 bases with 267 bases standard deviation.

Implementation and Hardware

In all experiments, unless otherwise noted, we fix the oligo length range [lmin, lmax] = [37, 52]

and set tsh = 37� and tmin = 37�. The value of tmax varies and details are given for each

experiment set. We set the threshold for oligo collisions to be tcol = 10�. Calculation

of melting temperature values, denoted by the function Tm in Sect. 2, were performed by

the PairFold (for duplexes) and SimFold (for single strands) structure prediction software

of Andronescu et. al [4]. All algorithms were implemented in C++ and compiled with

g++ (GCC 4.1.0). Experiments were run on our reference Pentium IV 2.4 GHz processor

machines, with 1GB main memory and 256 Kb of CPU cache, running SUSE Linux version

10.1.

3.3.2 Performance of the Collision Oblivious Algorithm

To better understand the practical effectiveness of the collision oblivious algorithm in finding

valid solutions and the number of collisions which occur in these designs, we conducted

a set of experiments on a limited dataset of 500 sequences chosen uniformly at random

from our reference dataset. For each of the sequences, both the ungapped and gapped

collision oblivious algorithms were run for each combination of four different values of tmax =

{60, 70, 80, 90} and two different values of lmax = {42, 52}.

Efficacy of the Gapped and Ungapped Versions

The gapped version of the algorithm is much more successful in finding valid designs (see

Fig. 3.2). This version finds a valid design for all 500 sequences, regardless of the value of
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Figure 3.2: The percentage of valid designs (of the 500 sample sequences) at different values
of tmax is reported for both the gapped and ungapped algorithm for different values of lmax.
The gapped algorithm is much more successful at finding valid designs.

tmax, when lmax = 52. When lmax = 42, a valid design is found in nearly every instance,

however, when tmax = 60 valid designs were not possible for 41 sequences. In contrast,

the ungapped version is relatively ineffective in practice, unless tmax ≥ 80. Even for the

highest value of tmax we tested, 90�, there was still one sequence where an ungapped

design was impossible, given the design constraints. Overall, of the 4000 design attempts

of the ungapped algorithm, only 2273 valid designs were found. Clearly, the added design

flexibility of the gapped version is crucial for designs requiring a low or moderate value for

tmax.

Runtime Performance

In Fig. 3.3 left side, the runtime distribution of the 500 sampled sequences is shown for both

the ungapped and gapped algorithms for both values of lmax when tmax = 60. Runtime

performance between the gapped and ungapped algorithm is virtually indistinguishable for

the same value of lmax. However, the distributions for different values of lmax are separated

by a constant factor. This characteristic behaviour is also observed for the other values
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tmax lmax Gapped % Valid Designs CPU runtime (stdev) Score (stdev)

60.0 42 No 0.6 3.87 (6.84) 1.57 (1.34)
60.0 42 Yes 92.0 3.92 (6.81) 1.59 (1.49)
60.0 52 No 15.2 15.95 (29.36) 1.19 (1.90)
60.0 52 Yes 100 16.75 (29.77) 0.47 (0.39)

70.0 42 No 26.4 3.88 (6.80) 4.70 (3.33)
70.0 42 Yes 98.8 3.99 (6.96) 2.42 (2.49)
70.0 52 No 46.9 16.27 (29.95) 1.06 (1.63)
70.0 52 Yes 100 16.26 (29.35) 0.34 (0.36)

80.0 42 No 79.4 3.85 (6.83) 10.71 (5.55)
80.0 42 Yes 100 4.03 (8.43) 8.77 (5.16)
80.0 52 No 90.6 16.63 (36.59) 3.07 (2.95)
80.0 52 Yes 100 16.42 (30.36) 2.47 (2.98)

90.0 42 No 97.00 3.84 (6.73) 19.84 (6.30)
90.0 42 Yes 100 3.96 (6.92) 18.52 (5.55)
90.0 52 No 99.40 16.09 (29.10) 10.29 (5.25)
90.0 52 Yes 100 16.30 (29.91) 10.12 (5.28)

Table 3.1: Results of the collision oblivious algorithm, using various design parameters, for
500 randomly selected sequences of the filtered GENECODE data set.
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Figure 3.3: On the left, the runtime distribution of the 500 sampled sequences is shown
for both the ungapped and gapped algorithm for two different maximum oligo lengths and
tmax = 60. Performance between gapped and ungapped variants is virtually indistinguish-
able for the same value of lmax. A constant difference is observed between different values
of lmax. On the right, the CPU runtime for each of the 500 sampled sequences is plotted
against sequence length for the gapped algorithm when tmax = 60 and lmax = 52. A lowess
regression curve of best fit has been added.

of tmax (data not shown). On the right side of Fig. 3.3, the runtime is plotted for all

500 sequences against their sequence length for the gapped algorithm with lmax = 52 and

tmax = 60. Clearly, the algorithm scales linearly in practice. This characteristic runtime

performance is also observed for all other combinations of design parameters (data not

shown).

Frequency of Oligo Collisions

Due to the relatively poor effectiveness of the ungapped design algorithm in finding valid

designs compared with the gapped design algorithm, we omit it from further analysis. For

each valid design found, PairFold was used to determine the number of oligo collisions based

on the protocol previously described. In Fig. 3.4, we report the number of collisions per 100

bases for each valid design found, for various values of tmax, in an attempt to normalize for

sequence length. The left side of the figure reports results for designs with lmax = 42, while

the right side shows results for lmax = 52. The mean number of collisions per 100 bases,

regardless of design parameters, is approximately 0. However, there do exist outliers having
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Figure 3.4: The number of collisions per 100 bases is reported for the optimal collision
oblivious designs of the sampled 500 sequences, at different values of tmax, using the gapped
algorithm with lmax = 42 on the left, and lmax = 52 on the right.

a significant number of collisions. When lmax = 52, the worst observed results generally

decrease as tmax is increased. Overall, compared with the number of collisions possible,

very few are observed in practice. This suggests it might be possible to adapt the collision

oblivious algorithm to eliminate collisions.
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Chapter 4

Complexity of Collision-Aware

Oligo Design

We conjecture that the collision-aware oligo design for gene synthesis (CA-ODGS) prob-

lem is NP-complete. To provide some evidence for this, we show NP-completeness of a

variation of the problem, which abstracts away thermodynamic details, while retaining the

key challenge of collision-aware partitioning. Informally, the variation asks whether a single

string (as opposed to a duplex) can be partitioned into short substrings of bounded length,

no two of which are identical. For example, consider partitioning the string theimportant-

thingisnevertostopquestioning into substrings having a maximum length of 3. One possible

solution is shown in Fig. 4.1 (top). Notice, however, that some partitions may produce sub-

strings which are identical as is the case for the other partition shown in Fig. 4.1 (bottom)

where both the substrings th and ing appear twice.

t h e i m p o r t a n t t h i n g i s n e v e r t o s t o p q u e s t i o n i n g

Figure 4.1: Two partitions are shown for the string theimportantthingisnevertostopques-
tioning. The substrings in both partitions have maximum length 3. The partition shown
above the string is valid, in that no two substrings are identical; however, the partition
shown below the string is invalid as there are two cases of identical substrings indicated
with arrows.

23
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In this chapter, we formally introduce the collision-aware string partition (CA-SP) prob-

lem. We motivate its similarity to the CA-ODGS problem and point out differences. Next,

a known NP-complete problem, 3SAT(3), is presented. A polynomial time reduction from

3SAT(3) to CA-SP is given and is followed by a proof of NP-completeness for CA-SP.

Finally, we conclude with some remarks to highlight the implications of a recent hardness

proof of a restricted version of the CA-SP problem [24].

4.1 The Collision-Aware String Partition Problem

Let Σ be a finite alphabet. A k-partition of a string A ∈ Σ∗ is sequence P = p1, p2, . . . , pl,

for some l, where each pi is a string over Σ of length at most k and A = p1p2 . . . pl. A

sequence of strings p1, p2, . . . , pl is collision-free if for all i, j, 1 ≤ i 6= j ≤ l, pi 6= pj . Given

a string A and a partition P of A, we say that a substring a of A is selected if and only if a

is an element of the partition P .

Collision-Aware String Partition (CA-SP)

Instance: Finite alphabet Σ, a positive integer k, and a string A from Σ∗.

Question: Is there a collision-free, k-partition P of A?

CA-SP differs from CA-ODGS in several ways: in CA-SP, the goal is to partition a string,

rather than a duplex; pairs of substrings that form a stable duplex are not considered; and

constraints on individual substrings are not modeled at all. Also, CA-SP pertains to an

arbitrary alphabet, whereas CA-ODGS pertains to an alphabet of size 4. However, the task

of designing a collision-free k-partition is quite similar to that of developing a collision-free

oligo design. The design goal of CA-SP, that of avoiding identical substrings, is one of the

design goals of CA-ODGS. To illustrate the importance of avoiding identical substrings in

the CA-ODGS problem, consider the oligo design in Fig. 4.2. The oligos labeled c and g

are identical and on the same strand. If oligo g hybridized to oligo b, the gene construction

could result in two distinct fragments (Fig. 4.2 top). Those labeled e and h are also identical

(read 5’ to 3’), but on opposite strands. If h hybridized to d, one full fragment could result,

however, it would contain a complementary inversion error (Fig. 4.2 bottom). This type

of error can be particularly troublesome, as the construct may need to be fully sequenced

before the error is discovered.
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CATTAATCGCA

CGTTATGGTCCCT

GGGATCGATTCGTT CCTGAATCGAGCAA

GCAAACGTCAAAGGGTTACGCGTAAGTAA
a

b

c

d

e

f

CGTTATGGTCCCT
g

GGGAAACTGCAAACG
h

5'

3'

3'

5'

CATTAATCGC
A

CGTTATGGTC
CCT

TTACGCGTAA
GTAA

GGGAAACTGC
AAACG

a
g

b
h

CATTAATCGCA

CGTTATGGTCCCT

GGGATCGATTCGTT

TTACGCGTAAGTAA GCAAACGTCAAAGGG

TCCCTGGTATTGC

AACGAGCTAAGTCC

GGGAAACTGCAAACG

GGGATCGATTCGTT CCTGAATCGAGCAA

GCAAACGTCAAAGGG

d f

e
CGTTATGGTCCCT

c

a

b

c

d

h

g

f

e

Figure 4.2: An invalid design (middle) containing two pairs of identical oligos. The identical
oligos c and g could hybridize out of order resulting in two distinct fragments (top). Identical
oligos from opposite strands must also be avoided as entire regions could be assembled out
of order (bottom).
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Next we introduce 3SAT(3) as presented and shown to be NP-complete by Papatim-

itriou [26].

3SAT(3)

Instance: A formula φ with a set C of clauses over a set X of variables in conjunctive normal

form such that:

1. every clause contains at most three literals,

2. each variable is restricted to occur at most three times, and

3. each literal is restricted to occur at most twice.

Question: Is φ satisfiable?

4.2 Reducing 3SAT(3) to CA-SP

We now describe a reduction from 3SAT(3) to CA-SP. Let φ be an instance of 3SAT(3),

with set C of clauses, and set X of variables. We shall define an alphabet Σ and construct

a string A ∈ Σ∗, such that A has a collision-free 2-partition if and only if φ is satisfiable.

We construct A to be the concatenation of three strings, A = A′A′′A′′′, with the following

properties. First, the string A′ encodes the clauses of φ, so that a collision-free 2-partition

of A unambiguously selects a literal from each clause. Intuitively, the selected literals are

intended to be a satisfying truth assignment for the variables of φ. Second, if A has a

collision-free 2-partition, string A′′ ensures that the selected literals are consistent, that is,

no selected literal can be the negation of another. The constructions of A′ and A′′ rely on

the fact that special short delimiting strings are forbidden– that is, cannot be selected in

the 2-partition of A′A′′. The string A′′′ is constructed to ensure that, in a collision-free 2-

partition of A, the forbidden strings must be selected from A′′′, and thus cannot be selected

from A′A′′.

We use alphabet Σ and set of forbidden strings F , defined as follows:

Σ = {xi : xi ∈ X} ∪ {αj
i : ci ∈ C ∧ j ≤ |ci|} ∪ {�,�,�,�} (4.1)

F = {�,��,�,��,�,��,�,��} (4.2)
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A′ α1
1 � α2

1 � α3
1 α3

1 � � α1
2 α1

2 α1
2 � � α1

3 α1
3 � α2

3 � � � �

A′′ α2
1 � α1

2
x1 α1

2
x1 α1

2 � α1
3 α1

3 � � α1
1 α1

1 � α2
3 � � � �

A′′′ � � � � � � � � � � � � � � � � � �

Figure 4.3: The construction of string A = A′A′′A′′′ for an instance φ of 3SAT(3), with X =
{x1, x2, x3} and C = {(¬x2, x1,¬x3), (¬x1), (x1, x2)}. Selections outlined with a box are
required to avoid a collision. All potential partitions of clause strings, in A′, and forbidden
strings, in A′′′, are shown.

Construction of A′: For each clause ci ∈ C, construct the ith clause string to be α1
i if

|ci| = 1, α1
i � α2

i if |ci| = 2, and α1
i � α2

i � α3
i if |ci| = 3. Next, construct the ith clause

connector string as α
|ci|
i � �α1

i+1. A′ is the concatenation of the 1st clause string, the 1st

clause connector, the 2nd clause string, the 2nd clause connector, and so on, up to the |C|th
clause string, and then terminated by � � ��. See Fig. 4.3 for an example.

Lemma 4.2.1. Given that no string from the forbidden set F is selected, exactly one lit-

eral symbol can be selected for each clause string in any collision-free 2-partition P ′ of A′.

Additionally, the termination string � � �� must be partitioned as ��, ��.

Proof. Consider a collision-free 2-partition of A′. Since the strings � and �� are forbidden,

it must be that the partition includes the substrings α
|ci|
i � and �α1

i+1 of the ith clause

connection string. Therefore, each clause string must be partitioned independently of the

symbols in the adjoining clause connector strings.

Consider the clause string for clause ci. If ci has one literal, it must be selected. If ci has

two or three literals, the forbidden substring � cannot be selected alone. Therefore, each

� must be selected with an adjacent literal symbol. This leaves exactly one other literal

symbol which must be selected.

Finally, neither of the termination symbols � or � can be selected alone in the string,

since they are in the forbidden set, and similarly the string �� cannot be selected since it

too is in the forbidden set. Therefore, the termination string � � �� must be partitioned

as �� and ��.

Construction of A′′: We must now ensure that no literal of φ that is selected in A′ is

the negation of another selected literal. By definition of 3SAT(3), each variable is restricted
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αb
j selected in A′ αa

i selected in A′

αc
k selected in A′ αa

i and αb
j selected in A′

αa
i � αc

k xv αc
k xv αc

k � αb
j

αa
i � αc

k xv αc
k xv αc

k � αb
j

αa
i � αc

k xv αc
k xv αc

k � αb
j

αa
i � αc

k xv αc
k xv αc

k � αb
j

Figure 4.4: For a variable xv having three literals αa
i , α

b
j , α

c
k, with (ac

k = ¬aa
i ) ∧ (ac

k = ¬ab
j),

four subsets of the literals can possibly be selected in A′. The enforcer string guarantees two
opposite literals cannot simultaneously be selected in A′. For instance, their are four valid
partitions of the enforcer string when αb

j , is selected in A′. In all four of these partitions, the
opposite literal, αc

k is selected and therefore cannot be selected in A′ without introducing a
collision. Similar arguments follow for the other three combinations of selecting literals of
a variable in A′.

to appear at most three times, and each literal is restricted to appear at most twice. It is

sufficient to consider the following two cases for each variable:

1. The variable occurs twice, with one occurrence being the negation of the other. Without

loss of generality, assume the two occurrences are αa
i and αb

j . Then construct the

enforcer string for this variable to be αa
i � αb

j .

2. The variable occurs three times, with one literal being a negation of the other two.

Without loss of generality, let the three occurrences be αa
i , αb

j and αc
k, with αc

k being

a negation of the other two. Then construct the enforcer string for this variable to be

αa
i � αc

k xv αc
k xv αc

k � αb
j .

Now, construct A′′ by concatenating all enforcer strings (in any order), separated by enforcer

connector strings. The ith enforcer connector string is σ � �σ′, where σ and σ′ are the last

symbol of the ith enforcer string in A′′ and the first symbol of the i + 1st enforcer string in

A′′, respectively. Terminate the resulting string with � � ��. See Fig. 4.3.

Lemma 4.2.2. Given that no string from the forbidden set F is selected, any collision-free

2-partition of A′A′′ must be consistent, and must partition the termination string of A′′ into

�� and ��.
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Proof. Consider a collision-free 2-partition of A′A′′. As was shown for clause strings in Lem.

4.2.1, the forbidden set forces that each enforcer connector string must be partitioned into

two parts, each of size 2. Thus, each enforcer string must be partitioned independently.

Consider the enforcer string, αa
i � αb

j , for two inconsistent literals αa
i and αb

j . Suppose

that only one literal is selected in A′. Without loss of generality assume this to be αa
i .

Then the enforcer string can be partitioned into αa
i � and αb

j , without forcing a collision.

However, if both αa
i and αb

j are selected in A′, there is no possible partition of the enforcer

string to avoid a collision.

Next, consider the the enforcer string for three literals, with αc
k being the negation of

αa
i and αb

j . We show the necessary and sufficient conditions by case analysis as presented

in Fig. 4.4. Each of the four valid combinations of selecting the variables in A′ is presented

in the figure. For each, there exists at least one valid partitioning of the enforcer string.

Furthermore, each of the possible valid partitions of the enforcer string prohibits an incon-

sistent selection. Specifically, suppose that αc
k is selected in A′. Then there are two possible

partitions of the enforcer strings (see Fig. 4.4 bottom left). In both partitions, αa
i and αb

j

are selected and therefore cannot be selected in A′ without introducing a collision. In the

other three cases where one or both of αa
i and αb

j are selected, every partition selects αc
k

and therefore it cannot be selected in A′ without a collision.

Finally, neither of the termination symbols � or � can be selected alone in the string,

since they are in the forbidden set, and similarly the string �� cannot be selected since it

too is in the forbidden set. Therefore, the termination string � � �� must be partitioned

as �� and ��.

Construction of A′′′: To ensure that the forbidden substrings cannot be selected in A′

or A′′, we construct A′′′ as shown in Fig. 4.3. A collision-free 2-partition of A′′′ selects every

forbidden substring. Note that the connectors with a boxed outline in the figure must be

selected, or a collision occurs. Then, for each sequence of forbidden symbols, there exists

two possible partitions, both of which force selection of two forbidden substrings. Also,

neither of the terminator strings at the end of A′ or A′′ appear in A′′′. This completes the

reduction.

Theorem 4.2.3. Collision-Aware String Partition (CA-SP) is NP-complete.

Proof. It is easy to see that CA-SP ∈ NP: a nondeterministic algorithm need only guess a

partition P where |pi| ≤ k for all pi in P and check in polynomial time that no two substrings
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in P are identical. Furthermore, it is clear that an arbitrary instance φ of 3SAT(3) can be

reduced to an instance CA-SP, specified by a string A, in polynomial time and space by the

reduction detailed above.

Now suppose there is a satisfying truth assignment for φ. Simply select one corresponding

true literal per clause in A′. The construction of clause strings guarantees that a 2-partition

of the rest of each clause string is possible, and this 2-partition can be extended to yield a

2-partition of A. Also, since a satisfying truth assignment for φ cannot assign truth values

to opposite literals, then Lem. 4.2.2 guarantees that a valid partition of the enforcer strings

are possible. Therefore, there exists a collision-free string partition of A.

Likewise, consider a collision-free string partition of A. Lem. 4.2.1 ensures that exactly

one literal per clause is selected. Futhermore, Lem. 4.2.2 guarantees that if there is no

collision, then no two selected variables in the clauses are negations of each other. Therefore,

this must correspond to a satisfying truth assignment for φ.

4.3 A Restricted Version of CA-SP

One of the major differences between the CA-SP and CA-ODGS problems is that CA-ODGS

uses a restricted alphabet of size 4 whereas CA-SP uses an unbounded, finite alphabet. One

could argue that CA-SP may be polynomial time solvable when |Σ| = 4, and therefore, there

exists little evidence that CA-ODGS is NP-hard. However, Maňuch et al. have recently

shown CA-SP is NP-complete even under this alphabet restriction [24]. Furthermore, the

authors have also been able to model another design goal shared by CA-ODGS. The new

version of CA-SP forbids any substring in a valid partition to be a complement of another,

where a complementary pair of substrings is defined analogously as a complementary pair

of oligos is in the CA-ODGS problem. This new result provides stronger evidence that

CA-ODGS is hard. What remains is to extend the proof to consider a duplex of strings,

rather than a single strand.
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Chapter 5

Collision Aware Oligo Design

Algorithms

In the previous chapter, we provided evidence that CA-ODGS is NP-hard. Given that a

polynomial time algorithm for this problem is unlikely, we now propose heuristic methods

to either prevent oligo collisions from occurring in a design or to partition a design into

collision free regions. An experimental analysis is conducted to determine the effectiveness

of the algorithms in producing designs considered to be collision free.

5.1 Greedy Collision Aware Algorithm

We now briefly outline a simple extension to the collision oblivious dynamic programming

oligo design algorithm detailed in Chapter 3, which uses a greedy approach. Recall that

the oligo design recurrences of Eqn. (3.1) (ungapped) and Eqn. (3.5) (gapped) evaluate

each prospective oligo and determine a score for adding it to an optimal sub-solution which

precedes it (see Fig. 3.1). The greedy extension is applied as follows. For each new oligo

being considered, it is first compared with all oligos in the sub-solution to determine if a

collision is being introduced. If one is, the new oligo is considered invalid. In this greedy

fashion, once an oligo is selected in a particular sub-solution, it always remains in that

sub-solution. Note that the space complexity of the algorithm remains linear, however, the

time complexity increases to O(n2).

31
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Figure 5.1: An oligo design with collisions denoted by edges (top) is transformed into an oligo
collision graph (middle) with designed hybridizations shown with solid edges and collisions
shown with dashed edges. A minimum-size partition of the graph, representing synthons, is
shown (bottom).

5.2 Collision Aware Synthon Design

Informally speaking, the heuristic we now propose does not attempt to minimize the number

of oligo collisions. Rather, it partitions an optimal collision oblivious design O into a

minimum number of synthon regions which are collision free. We note that there may

exist another optimal collision oblivious design which produces fewer synthons, however,

our algorithm makes no attempt to find such a design. As we demonstrate in Sect. 5.3.2

this simple approach is very effective in practice.

First, given the optimal valid designO for an input duplex S, construct the oligo collision

graph G = (V,E = E′∩E′′), in which V = set(O) and each node is labeled according to the

oligo order. That is, the oligo which covers the first position of the duplex is labeled ‘1’, then

the first oligo on the opposite strand is labeled ‘2’, and the remaining labels are assigned by

alternating between strands from left to right relative to the 5’ end of the sense strand. E′
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is the set of edges representing designed hybridizations, and E′′ the edges representing oligo

collisions, based on our previous definitions. Refer to Fig. 5.1 for an example with designed

hybridizations shown with solid edges and collisions shown with dashed edges.

Second, given G, determine the minimum-size partition P of V such that G[p] is con-

nected and does not contain an edge from E′′, ∀p ∈ P . A minimum-size partition of the

collision graph corresponds to the minimum number of collision free synthons required to

cover O. In Sect. 5.2.1, we present a dynamic programming algorithm for this task.

5.2.1 Synthon Partition Algorithm

Intuitively, D′
k from Eqn. (5.1) is the minimum number of collision free partitions (synthons)

of an oligo collision graph G required to cover the collision oblivious design O, up to oligo k.

The recurrence determines the best start position i of a synthon ending at position k. For a

potential synthon consisting of oligos i, . . . , k, if there is a collision between any pair of these

oligos, then the synthon is considered invalid (line 1). The base case occurs when a synthon

begins at the first oligo and no pair of oligos in the proposed synthon are in conflict (line

2). Otherwise, the recursive case adds an additional synthon to the score of the previous

best solution at D′
i−1 (line 3). Therefore, the minimum number of collision free synthons

required to cover set(O) having x oligos is given by D′
x. We set D′

0 = 0, and for 1 ≤ k ≤ x

we have

D′
k = min1≤i≤k

∞ , if ∃j, i ≤ j ≤ k, (j, k) ∈ E′′

1 , if ∀j, i ≤ j ≤ k, (j, k) /∈ E′′ ∧ (i = 1)

D′
i−1 + 1 , otherwise

 (5.1)

5.2.2 Time and Space Complexity

We assume that an oligo collision graph is given as input to the synthon partition algorithm.

However, we note this graph can be constructed naively in O(x2) time by comparing every

pair of oligos under the assumption that the collision condition can be calculated in some

constant time.

The synthon partition algorithm is quadratic in the number of oligos, x, in O. Since for

every ending position k, 1 ≤ k ≤ x, all possible starting positions of the synthon must be
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evaluated, 1 ≤ i ≤ k, then in the worst case, O(x2) time is required. As we must store an

entry in the dynamic programming table for each k, 1 ≤ k ≤ x, then O(x) space is required.

5.2.3 A Speedup for determining the collision graph

Although the collision graph can be naively constructed in O(x2) time, the same complexity

of the synthon partition algorithm, in practice the runtime performance for this task is

much worse than the partition algorithm. The following observation can lead to a significant

speedup in runtime performance.

Observation 5.2.1. For any two oligos i, j, i < j, if i and j are in conflict, then for any

oligo k, j < k, k and i must be contained in different collision free partitions.

This observation leads to the notation of a minimal collision graph. As conflict edges

are being determined, it is not necessary to compare two oligos for a conflict if a previous

conflict, occurring between the two, is already known. We note that this speedup does not

decrease the worst case complexity, as every pair of oligos will still be compared for conflicts

if no conflicts in the design exist. However, to quantify the improvement we conducted all

experiments of Sect. 5.3.2 with and without the use of this speedup for determining the

collision graph. The worst case for determining the collision graph without the speedup

was 67 minutes, while only 19 minutes when the speedup was used. The average runtime

of 151.1 seconds was reduced to 2.3 seconds when the speedup was applied. All results of

experiments reported in Sect. 5.3.2 made use of this speedup.

5.3 Experimental Analysis

For all experiments conducted below, we use the same five hundred sequences chosen uni-

formly at random from our reference dataset as those in Chapter 3. Due to the poor design

success rate of the ungapped algorithm, we omit it from further analysis.

5.3.1 Performance of the Greedy Algorithm

To evaluate the greedy algorithm, gapped oligo designs were attempted for each combination

of the following design parameters. For oligo length, lmin was fixed at 37 bases, while lmax

varied in {42, 52}. For oligo melting temperature, tsh was fixed at 37.0, tcol at 10.0, tmin at

50.0 and tmax varied in {60, 70, 80, 90}. The results for valid designs are shown in Table 5.1.
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lmax tmax valid designs found longest valid design average length of
valid designs

42 60.0 0 0 0.0
42 70.0 1 90 90.0
42 80.0 9 90 83.0
42 90.0 33 137 91.6
52 60.0 70 93 83.1
52 70.0 70 93 83.1
52 80.0 71 109 83.5
52 90.0 82 145 87.4

Table 5.1: The greedy oligo design algorithm performs poorly in practice, finding few colli-
sion free designs and only succeeds for short sequences.

Overall, the greedy algorithm is ineffective in practice. In the best case, only 16% of the

500 sequences could be designed collision free. Furthermore, all valid collision free designs

which were found were all for short sequences.

5.3.2 Performance of the Synthon Partition algorithm

For each of the five hundred sequences, the gapped collision oblivious design algorithm was

run for each combination of tmax = {60, 70, 80, 90} and lmax = {42, 52}. All other design

parameters remained fixed as described above. For each valid design which resulted, the

collision conflict graph was constructed based on the protocol previously described. The

synthon design algorithm was then run to determine the minimum number of synthons

needed to have a collision free partition of the original valid design. Runtime statistics were

tracked throughout and are discussed below.

In Fig. 5.2, the cumulative distributions of required synthons over the five hundred

sequences is plotted for each value of tmax with results for lmax = 42 shown on the left, and

lmax = 52 shown on the right. The worst case occurs for tmax = 60� and lmax = 42 when

16 synthons are required to partition a 1.3kb sequence into collision free regions. However,

even at this lowest temperature tested, approximately 85% of all sequences require two

synthons or less to become collision free and roughly 70% requiring only one synthon. Each

successive value of tmax further improves upon this result with tmax = 70� requiring at

most two synthons for 95% of sequences.
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Figure 5.2: For moderate values of tmax, very few synthons are required to make a design
collision free. Results for lmax = 42 are shown on the left and results for lmax = 52 are
shown on the right.
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Chapter 6

Codon Optimization

In this chapter, we begin by formally defining the problem of codon optimization. We

detail the general objectives of the problem, some common constraints, and highlight two

optimization criteria which are often used in practice. Algorithms are proposed for both,

followed by a discussion of their correctness and time and space complexity. We adapt one

of the algorithms to find a set of solutions, under the additional constraint that no two

DNA sequences in the solution set can have a sequence similarity above a predetermined

threshold. We conjecture that this adaptation can be particularly useful for finding collision-

free designs using the previously proposed algorithms of Chapters 3 and 5. We conduct an

extensive experimental analysis to determine the effectiveness and efficiency of the proposed

algorithms on a large biological data set. Finally, we end with an experimental analysis on

the utility of codon optimization for collision free oligo design.

6.1 Problem Definition and Overview

In general, codon optimization entails the encoding of an amino acid sequence into a cor-

responding DNA sequence, using the genetic code, such that some constraints are satisfied

and some criterion is optimized. In this section we begin by defining some new terms and

notation, review common constraints and optimization criteria for the problem and end with

a formal problem definition.

37
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6.1.1 Notation and Definitions

Recall from Chapter 2 that a DNA strand S is a string over the alphabet ΣDNA = {A,C, G, T}.
A codon is a triple over ΣDNA and therefore 43 = 64 distinct codons exist. An amino acid

sequence is a string over the alphabet ΣAA = {Ala, Arg, Asn, Asp, Cys, Glu, Gln, Gly,

His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, V al, stop} with each symbol

representing an amino acid and the special symbol ‘stop’ denoting a string terminal. The

genetic code is a mapping between amino acids and codons. However, as there are 64 codons

and only 20 amino acids (plus one stop symbol), the code is degenerate, resulting in a one-

to-many mapping from each amino acid to a set of corresponding codons1. Suppose αi is an

amino acid. We define |λ(αi)| to be the number of codons corresponding to αi and λj(αi)

to be the jth such codon, 1 ≤ j ≤ |λ(αi)| – we assume there is a predetermined ordering of

codons for each amino acid.

A codon’s frequency is the number of times that it appears in nature, divided by the

total number of all codons corresponding to the same amino acid. By nature, we imply

codon frequencies present in some reference sequence or set of sequences such as a genome

or set of genomes. As an example, if for some amino acid αi, |λ(αi)| = 2, and the codon

λ1(αi) is observed 37 times in nature, while λ2(αi) is observed 63 times, we can define the

relative frequency of λ1(α) to be 37
37+63 = 0.37. Let ρj(αi) denote the relative frequency of

the jth codon of αi, 1 ≤ j ≤ |λ(αi)|. Note that
∑|λ(αi)|

i=1 ρj(αi) = 1.0, for any αi. In the

example above, we say that λ2(αi) is the most frequent codon. Note that it is possible for

more than one codon to have this property.

A codon’s fitness is the number of times that it appears in nature, divided by the number

of occurrences of the corresponding most frequent codon. Returning to our previous exam-

ple, if an amino acid αi has two codons with frequencies ρ1(αi) = 0.37 and ρ2(αi) = 0.63,

then their fitness values, denoted by τ1(αi) and τ2(αi) respectively, are 0.37/0.67 ≈ 0.55 and

0.67/0.67 = 1.0. Note that a most frequent codon will always have a fitness value of 1.0.

For convenience, we let ρ(b1b2b3) and τ(b1b2b3) denote the relative frequency and fitness,

respectively, of the codon represented by the DNA triple b1b2b3. Furthermore, let |λ(i)| be

the number of codons corresponding to the ith amino acid and τij denote the relative

frequency of the jth codon of the ith amino acid, where we assume there is a predetermined

1The process of gene translation can be thought of more naturally as a mapping of codons to amino acids,
however, we define our mapping as the inverse for convenience.
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ordering of amino acids.

6.1.2 Constraint Satisfaction

For constraint satisfaction, we focus our attention on designing DNA sequences which do

not contain any forbidden motif from a predetermined set, F . This is a common practice

and important for eliminating such things as restriction enzyme recognition sites of a host

organism [15] and polyhomomeric repeat regions [40]. A DNA design is said to be valid if it

satisfies this constraint. We limit our attention to this definition; however, we note that in

certain applications, elimination of certain motifs can be seen as an optimization criterion

and not a hard constraint. This is the case for the elimination of immuno-inhibitory CpG

motifs in mammalian expression vectors [31].

In practice, forbidden motifs are short and we assume their length is bounded by a

constant, g.

Observation 6.1.1. If the largest forbidden motif is of length g, then any forbidden motif

can span at most k + 1 consecutive codons, where k = dg/3e.

One necessary feature of a codon optimization algorithm is an efficient means to detect if

a forbidden motif from F is present in a potential design. For both algorithms proposed be-

low, we utilize an Aho-Corasick search for this purpose. Briefly, the Aho-Corasick algorithm

builds a keyword tree (trie) for F and transforms the structure into an automaton with the

addition of failure links. Space and time complexity for building the initial structure is O(h),

where h is the total length of every motif in F . Queries to determine if a sequence b contains

any forbidden motif takes O(|b|) time [1]. An example of an Aho-Corasick automaton is

given in Fig. 6.1. For a detailed description of the algorithm and existing applications of its

use in computational biology, the reader is directed to Gusfield [14].

6.1.3 Criterion Optimization

We now review two different measures commonly employed for codon optimization, the

codon adaptation index (CAI) and the codon deviation index (CDI). The former measures

the overall fitness of a sequence based on the fitness of its constituent codons while the

latter measures the deviation of observed frequencies of codons in the sequence, to the

codon frequencies found in nature.
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null
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Figure 6.1: An example of an Aho-Corasick automaton. The automaton is for the set of
patterns F = { eye, he, her, iris, is, their }. Output nodes are shown as boxes and failure
links as dashed edges (failure links leading to the root are not shown). The example has
been recreated based on an example found in Dori and Landau [7].
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The Codon Adaptation Index

The codon adaptation index, originally proposed by Sharp and Li [33], is based on the

premise of each amino acid having a ‘best’ codon for a particular organism. This perspective

evolved from the observation that protein expression is higher in genes using codons of high

fitness and lower in genes using rare codons [15]. It is believed this is due to the relative

availability of tRNAs within a cell.

The ‘best’ codon, referred to above, is the most frequent codon and therefore, by defi-

nition, has a fitness value of 1.0. For some DNA sequence S = b1b2 . . . b3m−1b3m, the CAI

value for S, CAI(S), can be calculated as in Eqn. (6.1). Based on this definition, if S consists

only of most frequent codons, it would have a CAI value of 1.0.

CAI(S) =
1
m

m−1∏
i=0

τ(b3i+1b3i+2b3i+3) (6.1)

The Codon Deviation Index

The codon deviation index is based on a more recent theory. In a review of codon bias

effects on protein expression, Gustafsson et al. [15] suggest three reasons that a ‘best’ codon

approach to gene design may inhibit protein expression:

1. Skewed codon usage patterns, relative to those found in genes naturally occurring

within the host organism, could result in high usage of only a subset of the tRNA

pool, possibly exhausting their availability, and resulting in translational error [22].

2. No flexibility in codon usage could make it impossible to avoid repetitive elements and

secondary structure within the gene, possibly inhibiting ribosome processing [13].

3. If codon usage is rigidly fixed, inclusion or exclusion of restriction sites relevant to

gene synthesis may be impossible.

We add, however, that it is possible to account for the second and third items, if a less

than perfect CAI value is permitted for a gene design.

Despite this characterization in the aforementioned study, to the best of our knowledge,

no formal measure has been proposed to quantify the deviation of observed codon usage

within a gene relative to the codon usage frequencies found to occur naturally within a

host organism. We propose the following measure in Eqn. (6.2) as appropriate for this
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purpose, where OBS(b3i+1b3i+2b3i+3) is the fraction of observed occurrences of the codon

b3i+1b3i+2b3i+3, relative to all codons for the same amino acid, in the DNA sequence S =

b1b2 . . . b3m−1b3m. Note that the CDI measure has a maximum value of 2.0, when the

observed and the naturally occurring codon distributions are disjoint, and a minimum value

of 0.0 when both distributions are identical.

CDI(S) =
1
m

m−1∑
i=0

|ρ(b3i+1b3i+2b3i+3)−OBS(b3i+1b3i+2b3i+3)| (6.2)

Observation 6.1.2. It is not always possible to achieve a CDI value of 0.0, regardless of

constraints. The lower bound of a CDI value is dependent on the amino acid composition

and the naturally occurring codon distribution.

A simple linear time algorithm for determining the lower bound of the CDI value of a

given sequence is given in Algorithm 6.1.

6.1.4 The Codon Optimization Problem

With the previously defined definitions, notation, constraints and optimization criteria, we

now formally define the problem of codon optimization.

Codon Optimization

Instance: Amino acid sequence A = α1α2 . . . αm−1αm, codon mapping table C, a set of

forbidden motifs F and an objective optimization function g to be maximized (minimized).

Problem: With respect to the codon mapping table C find a DNA sequence S∗, |S∗| =

3m, corresponding to A such that S∗ contains no forbidden motif from F as a substring

and g(S∗) = max{g(S)|S ∈ D(A)}, where D(A) is the set of all valid DNA sequences

– sequences not containing a forbidden motif – corresponding to A. We similarly define

g(S∗) = min{g(S)|S ∈ D(A)}, if g is meant to be minimized. S∗ is an optimal codon design

with respect to g.
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Input: A – an amino acid sequence
Output: CDILB – the lower bound CDI value for this instance

CDILB ← 0;
// Frequency(i) counts the occurrences of the ith amino acid type in A
for i← 1 to 20 do

if Frequency(i) = 0 then continue;
numallocated← 0;
remainingpqueue← ∅;
for j ← 1 to |λ(i)| do

expected← τij × Frequency(i);
numtoallocate← bexpectedc;
allocatedij ← numtoallocate;
numallocated← numallocated + allocatedij ;
remaining ← expected− numtoallocate;
if remaining > 0 then

AddToPriorityQueue(remainingpqueue, {remaining, j});
end

end
// remainingpqueue is sorted in descending order of remaining value
while numallocated < |λ(i)| do

(remaining, j)← PopOffPriorityQueue(remainingpqueue);
allocatedij ← allocatedij + 1;
numallocated← numallocated + 1;

end
CDIi ← 0;
for j ← 1 to |λ(i)| do

CDIi ← CDIi + |τij − allocatedij

Frequency(i) |;
end

CDILB ← CDILB + Frequency(i)
|A| × CDIi;

end
return CDILB;

Algorithm 6.1: Calculating the CDI lower bound for a sequence.
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6.2 Codon Optimization Algorithms

6.2.1 A Dynamic Programming Algorithm for CAI Optimization

We now propose a linear time and space dynamic programming algorithm guaranteed to

maximize the CAI measure, such that the designed DNA sequence contains no forbidden

motifs, if such a design exists. Previously, Satya et al. [31] proposed an Θ(n2) time and

space algorithm, based on a graph theoretic approach of finding a critical path, to maximize

the CAI measure, via codon optimization, while first minimizing occurrences of undesirable

motifs and maximizing occurrences of desirable motifs, where n is the length of the input

amino acid sequence and the maximum length of any motif is bounded by a constant.

Their description of the problem is more general than ours, however, we conjecture that our

algorithm can be extended to handle the general case, whilst maintaining linear time and

space complexity.

Our algorithm stores a k-dimensional entry for each position i, k ≤ i ≤ n, of the input

amino acid sequence, where k = dg/3e and g is the constant bounding the length of any

forbidden motif found in F . Each entry stores the results of a combination of the previous

k codons, with P i
ck,ck−1,...,c2,c1 denoting the entry ending at position i with αi being mapped

to the (c1)th codon, αi−1 being mapped to the (c2)th codon, etc. The base case occurs when

i = k and is computed as follows. Every combination of codons for the first k amino acids

is evaluated to determine if it fully contains a forbidden motif (Eqn. 6.3, line 1) — note,

MF (S) is true if and only if the sequence S contains a forbidden motif. If a k-sequence of

codons does not contain a forbidden motif, a score for the entry is computed as the product

of the fitness values for each of the codons in the sequence (Eqn. 6.3, line 2).

P k
ck,ck−1,...,c2,c1 ={
−∞ , if MF

(
λck

(α1)λck−1
(α2) . . . λc2(αk−1)λc1(αk)

)
= true∏k

i=1

(
τck−i+1

(αi)
)

, otherwise

}
(6.3)

The recursive case occurs for i > k. As the base case ensures that any entry not equal

to −∞ is free of forbidden motifs occurring within the corresponding codon sequence, we

must simply ensure that no codon at successive positions introduces a forbidden motif that
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end within it. By Observation 6.1.1, a forbidden motif could span k + 1 codons. There-

fore, it is necessary to evaluate the last k + 1 codons of a potential design to ensure it

is free of forbidden motifs and determine which leads to higher score. Due to the above

reasons, every valid codon for αi−k must be tested to ensure a forbidden motif is not being

introduced. If no valid design was previously found for the k-sequence ending at position

i − 1, then appending an additional codon will still result in an invalid design (Eqn. 6.4,

line 1). If adding the new codon introduces a forbidden motif, it must be marked as invalid

(Eqn. 6.4, line 2). However, if the new codon sequence is free of forbidden motifs, the re-

sult at the previous position is multiplied with the fitness of the new codon (Eqn. 6.4, line 3).

P i
ck,ck−1,...,c2,c1 = max1≤ck+1≤|λ(αi−k)|
−∞ , if P i−1

ck+1,ck,...,c3,c2 = −∞
−∞ , if MF

(
λck+1

(αi−k)λck
(αi−k+1) . . . λc2(αi−1)λc1(αi)

)
= true

τc1(αi)× P i−1
ck+1,ck,...,c3,c2 , otherwise


(6.4)

Eqn. 6.5 determines the optimal score up to position i of the input amino acid sequence.

Therefore, the optimal CAI value of some input sequence A of length n is given by P̃n
k .

P̃ i
k = max

1≤c1≤|λ(αi)|
1≤c2≤|λ(αi−1)|

...
1≤ck−1≤|λ(αi−k+2)|
1≤ck≤|λ(αi−k+1)|

{
P i

ck,ck−1,...,c2,c1

}
(6.5)

Pseudo-code for the above recurrences is given in Algorithm 6.2. We now present a

formal proof of correctness for the algorithm, followed by a discussion of the time and space

complexity.

Theorem 6.2.1. P̃ i
k of Eqn. (6.5) correctly determines the score of an optimal codon design

up to the ith codon, with respect to the CAI measure, that does not contain any forbidden

motifs of maximum length 3k, if such a design exists.

Proof. We will argue by induction. First, consider the base case when i = k. P̃ k
k will de-

termine the maximum score of all the codon designs ending at position k. The score for

each of these designs is determined by Eqn. 6.3. Each design is tested to ensure it is free
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Input: A = α1α2 . . . αm – an amino acid sequence, F – set of forbidden motifs, and g
– length of longest forbidden motif

Output: CAIopt – the score of an optimal design
CAIopt ← −∞;
k ← dg/3e;
// First, fill in the base case
for c1 ← 1 to |λ(αk)| do

...
for ck ← 1 to |λ(α1)| do

if MF (λ(α1)λ(α2) . . . λ(αk−1)λ(αk)) then
P k

c1,c2,...,ck−1,ck
← −∞;

else
P k

c1,c2,...,ck−1,ck
← τck

(α1)× τck−1
(α2)× . . .× τc2(αk−1)× τc1(αk);

end
end
...

end
// Next, the recursive case and track optimal score when i = m
for i← k + 1 to m do

for c1 ← 1 to |λ(αi)| do
...
for ck ← 1 to |λ(αi−k+1)| do

P i
ck,ck−1,...,c2,c1 ← −∞;

for ck+1 ← 1 to |λ(αi−k)| do
if P i−1

ck+1,ck,...,c3,c2 = −∞ then continue;
if MF (λ(αi−k)λ(αi−k+1) . . . λ(αi−1)λ(αi)) = false then

if τc1(αi)× P i−1
ck+1,ck,...,c3,c2 > P i

ck,ck−1,...,c2,c1 then
P i

ck,ck−1,...,c2,c1 ← τc1(αi)× P i−1
ck+1,ck,...,c3,c2 ;

if i = m and P i
ck,ck−1,...,c2,c1 > CAIopt then

CAIopt ← P i
ck,ck−1,...,c2,c1 ;

end
end

end
end

end
...

end
end
return CAIopt;

Algorithm 6.2: Dynamic programming algorithm for optimizing CAI.
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of forbidden motifs. If it is, the score is the product of the fitness values for each of the

k selected codons. If it does contain a forbidden motif, a score of −∞ is assigned. The

maximum of these scores is clearly the best solution up to position k. If that score is −∞,

then no valid design is possible.

Let us assume that P̃ i−1
k correctly determines the optimal score up to position i−1, if a valid

design exists. P̃ i
k must determine the maximum score possible by evaluating all codon designs

ending at position i. These scores are calculated in the recursive case shown in Eqn. (6.4).

Consider how a score is determined for an arbitrary assignment of the last k codons ending at

position i, denoted as P i
ck,ck−1,...,c2,c1 . In determining the score of appending the c1th codon

of αi, we must first determine the maximum score of a design ending at position i− 1, hav-

ing the codon assignments ck, ck−1, . . . , c3, c2 for amino acids αi−k+1, αi−k+2, . . . , αi−2, αi−1.

This can be determined by looking at all |λ(αi−k)| possible codon assignments to αi−k and

is given by P i−1
ck+1,ck,...,c3,c2 . If no valid design exists amongst these possibilities, adding an ad-

ditional codon at position i would also be invalid. Of the valid scores, we are guaranteed the

associated codon designs do not contain a forbidden motif. However, by Observation 6.1.1

a forbidden motif could be contained within k + 1 successive codons. Therefore, we must

evaluate the DNA string λck+1
(αi−k)λck

(αi−k+1) . . . λc2(αi−1)λc1(αi) to determine if it con-

tains a forbidden motif ending within the codon assignment for αi. If a forbidden motif is

found, the invalid design is given a score −∞, otherwise, the score is defined as the product

of the fitness of the new codon assignment with the aforementioned best solution ending at

position i− 1. Therefore, by evaluating all assignments to the last k codon positions ending

at position i, P̃ i
k is guaranteed to find the score of an optimal design ending at position i,

unless no valid design exists.

Time and Space Complexity

Let A be an amino acid sequence of length n and F be a set containing forbidden motifs of

maximum length g with h being the sum of the lengths for all motifs in F . Set k = dg/3e. We

assume g, and therefore k, is constant and in practice g � n. An Aho-Corasick automaton

containing all forbidden motifs is built only once, in O(h) time. As the maximum number

of codons for any amino acid is 6, the base case must evaluate 6k possible codon designs

in the worst case. Determining if a design of length k contains a forbidden motif can be

accomplished in O(3k) time and we assume the product of k numbers can be computed in

O(k) time. Therefore, O(6k · 3k) time in total is required to compute the base case. For

http://www.synthesisgene.com ShineGene



CHAPTER 6. CODON OPTIMIZATION 48

every position i, k < i ≤ n, O(6k) possible designs must be evaluated. Each of these sub

designs could potentially be prefixed by 1 of 6 different codons (at position i−k). Evaluating

each of these possibilities requires checking for forbidden motifs, in O(3(k + 1)) time, and

performing one multiplication. Determining the best of the previous codons therefore takes

O(6 ·3(k+1)) time. All O(6k) possible designs at some position i can therefore be calculated

in O(6k+1 ·3(k+1)) time. This effort must be repeated n−k times. The best answer can be

determined by finding the maximum of the previously calculated scores at position n in O(6k)

time. Therefore, the total time complexity is O(h+6k ·3k+(n−k)·6k+1 ·3(k+1)) = O(h+n),

as k is constant.

Storing the Aho-Corasick tree takes O(h) space. Furthermore, O(6k) entries must be

maintained in the dynamic programming table for each of n−k codon positions. Therefore,

O(h + 6k · (n− k)) = O(h + n) space is needed. If only a score is required, the space can be

reduced to O(1). Finally, we note that in practice h� n.

6.2.2 CDI Optimization Algorithm

It is not currently known whether a polynomial time algorithm exists to solve the CDI

optimization problem under the constraint that forbidden motifs must be avoided. In the

absence of a deterministic algorithm, we propose one based on stochastic local search (SLS)

using a state-of-the-art extended ensemble Monte Carlo search method, replica exchange

Monte Carlo (REMC). We first present an introduction to the concepts central to REMC

search, followed by a discussion of our specific implementation. We then provide some

theoretical insight into the search neighbourhood used by our search algorithm, motivating

the need for future work on this problem.

Replica Exchange Monte Carlo Search

In the following, we provide a brief introduction to replica exchange Monte Carlo search2.

For an in-depth description of the algorithm including its historical aspects, the reader is

referred to the review of extended ensemble Monte Carlo algorithms by Iba [18], which also

provides details related to simulated tempering [25] and replica Monte Carlo search [36].

Replica exchange Monte Carlo (REMC) search maintains χ independent replicas of a po-

tential solution. Each of the χ replicas has an associated temperature value (T1, T2, . . . , Tχ).

2The description of REMC has been adapted from a previous work [37].
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Each temperature value is unique and the replicas are numbered such that T1 < T2 < . . . <

Tχ. In our description of the algorithm, we will label the χ potential codon designs main-

tained by the algorithm at any given time with the replica numbers (1, . . . , χ) and always

associate temperature Tj with replica j (for all j such that 1 ≤ j ≤ χ). Thus, the exchange

of replicas is equivalent to (and is commonly implemented as) the swap of replica labels.

Each of the χ replicas independently performs a simple Monte Carlo search at the

respective temperature setting. The transition probability from some current codon design

c to an alternative codon design c′ is determined using the so-called Metropolis criterion

such that

Pr[c→ c′] :=

{
1 , if ∆CDI ≤ 0

e
−∆CDI

T , otherwise

}
(6.6)

where ∆CDI := CDI(c′)−CDI(c) is the difference in the CDI values between codon designs

c′ and c, and T denotes the temperature of the replica.

We can represent the current state of the extended ensemble of all χ replicas as a vector

c := (c1, . . . , cχ) shown below, where cj is the codon design of replica j, which (as previously

stated) runs at temperature Tj .

During replica exchange, temperature values of neighbouring replicas are swapped with

a probability proportional to their CDI value and temperature differences. An exchange

of temperatures, and therefore a relabeling of replicas, affects the state of the extended

ensemble c. Therefore, we define an exchange between two replicas i and j more generally

as a transition of the current ensemble state c to an altered state c′. We define l(ci) = i,

the current label or replica number, for all ci. The probability of a transition from ensemble

state c to state c′ by exchanging replicas i and j is defined as:

Pr[c→ c′] := Pr[l(ci)↔ l(cj)] (6.7)

:=

{
1 , if ∆ ≤ 0

e−∆ , otherwise

}

The value ∆ is the product of the CDI difference and inverse temperature difference:

∆ := (βj − βi)(CDI(ci)− CDI(cj))

where βi = 1
Ti

is the inverse of the temperature of replica i.
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Potential replica exchanges are only performed between neighbouring temperatures,

since the acceptance probability of the exchange drops exponentially as the temperature

difference between replicas increases. Intuitively, replica exchanges are favourable when a

promising solution at a high temperature is compared with a less favourable solution at a

lower temperature. The more favourable solution should proceed to a lower temperature

replica so it may converge on a local (possibly global) minima. The Monte Carlo search

for the replica with a less favourable solution at a lower temperature may have stagnated,

therefore an exchange to an increased temperature will make it more probable that barriers

in the search landscape can be overcome to escape a local minima.

Our REMC Algorithm for Optimizing CDI

We now describe specific implementation details of our proposed REMC algorithm. First,

we must distinguish between a valid search state and an invalid search state. We define a

search state to be valid if and only if the corresponding codon design is free of any forbidden

motifs. Any other state is considered invalid. An important property of our algorithm is that

the search will never proceed to an invalid state. In this way, we can assure an incumbent

solution, the best solution so far, is guaranteed to be valid. However, to ensure this property

is satisfied, the initial state of the search must be valid. As the CAI optimization algorithm

is guaranteed to find a valid solution, if one exists, we employ a modified version of it for

this purpose.

Recall that the CAI optimization algorithm keeps track of optimal paths to previous sub-

solutions. We can easily modify this algorithm to keep track of all valid paths by increasing

our space complexity by a constant factor of 6 — as there are always at most one of 6

different codons which could be prepended to a potential k-sequence of codons ending at

some position i, in the worst case, all 6 could lead to valid paths and must be stored. If

there is no valid solution found using this modified CAI optimization algorithm, then we are

guaranteed by Thm. 6.2.1 that a solution does not exist and we may terminate our search

immediately. However, if a solution is possible, we can randomly choose a path at each

point of the traceback from all valid paths to a sub-solution. In this way, we are randomly

sampling an initial start state from all valid codon designs. Due to a result we later show

in Thm. 6.2.4, this property of our algorithm is necessary to ensure any valid state can be

found.
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A necessary design decision of any local search is the definition of its search neigh-

bourhood. In our implementation, we have chosen to use the very common δ-exchange

neighbourhood, with δ = k + 1, under the additional constraint that invalid states are not

considered to be in any neighbourhood. To distinguish between a δ-exchange neighbourhood

that does not allow transitions to invalid states from one which does, we refer to the former

as a δ-valid-exchange neighbourhood. If our input sequence is of size m, then there exist m

components comprising our search state – that is, the assignments of codons for each amino

acid. Therefore, in a δ-exchange (and δ-valid-exchange), up to δ of these codons can be

reassigned to a different value. In addition to limiting our search neighbourhood exchange

size to k + 1, we add the restriction that the k + 1 possible codon reassignments must be in

consecutive positions within the sequence.

The choice of setting δ = k + 1 and allowing only consecutive codon exchanges accom-

plishes two objectives. First, since by Observation 6.1.1 a forbidden motif can span at most

k + 1 codon positions, this search neighbourhood ensures that any valid assignment can be

explored within a k + 1 length region – this is the basic premise behind the CAI dynamic

programming algorithm. For an example of why this may not be possible for an exchange

neighbourhood with δ < k + 1, refer to Fig. 6.2. However, we make no assertion with re-

gards to a region larger than k + 1. Second, as only k + 1 consecutive codons are possibly

changed, only a constant size region (at most 3k + 1) must be searched for the introduction

of forbidden motifs, which can be accomplished in constant time.

Stochastic Local Search for the Codon Optimization Problem

We now pause to consider the applicability of using stochastic local search techniques to

solve the codon optimization problem. While SLS algorithms are probabilistic, there are

distinguishing notions of completeness analogous to deterministic algorithms. Hoos and

Stützle [16] define what is meant for an SLS algorithm to be complete, incomplete and prob-

abilistically approximately complete (PAC) for decision problems and corresponding defini-

tions for optimization problems. Informally, an SLS search algorithm is probabilistically

approximately complete for a given problem, if and only if, the probability of solving any

instance of the problem is 1.0 in the limit t→∞, where t is the run time. Also, note that

a search neighbourhood is considered complete, if and only if, the search can proceed from

any state to any other state through a series of search state transitions, given enough time

(in the limit t→∞). Given this background, we now provide some theoretical insight into
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Trp His Arg Trp

TGG CAT

CAC

CGT

CGC

CGA

CGG

AGA

AGG

TGG

Figure 6.2: An example of an unreachable state when δ < k+1. Shown above is an instance
consisting of four amino acids, a forbidden set F = { CGC, CGA, CGG, ACC, TAG }
and therefore k = 1 and δ = 1 (by our assumption). Arginine has six corresponding codons,
however, three of them appear in F and are shown with red boxes. Adjacent codons, those
following logically next in the sequence, are shown connected by an edge. Two adjacent
codons are shown connected by a bold edge if and only if their concatenation does not
introduce a forbidden motif. There are only three valid codon assignments for this problem
instance. If the initial codon assignment is the assignment shown in the first row, then there
is no valid transition to the other two states without introducing a forbidden motif since
δ < 2.
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Input: A = α1α2 . . . αm – an amino acid sequence, F – a set of forbidden motifs, k –
length of longest forbidden motif

Output: c∗ – the sequence with lowest CDI value found

// we assume an optimal design can be returned from OptimizeCAI, not
the optimal score

c← OptimizeCAI (A, m, F , k);
if CDI(c) = ∅ then // if no design exists, return

return ∅;
end
CDILB ← CDIlowerbound(A);
// initialize search variables to defaults
χ← 5;
φ← 5000;
Tmin ← 1;
Tmax ← 100;
σ ← 15;
// search for optimal design
c∗ ← REMCsearch(c,CDILB, χ, φ, Tmin, Tmax, k + 1, σ);
return c∗;

Algorithm 6.3: A stochastic local search based algorithm for optimizing codon bias
with respect to the CDI measure.
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Input: c – a valid DNA sequence, CDILB – the lower bound for CDI values, χ – the
number of replicas, φ – the number of local steps, Tmin, Tmax –
minimum/maximum search temperatures, δ – the maximum number of
consecutive codons in exchanges, σ – maximum search time

Output: c∗ – the sequence with lowest CDI value found
// initialize variables
CDImin ←∞;
c∗ ← c;
offset ← 0;
Tstep ← Tmax−Tmin

χ−1 ;

// initialize replica specific settings
foreach replica i in 1 to χ do

ci ← c;
Ti ← Tmin + (i− 1) · Tstep;

end

// search until lower bound reached, or time runs out
while CDImin > CDILB and ElapsedTime() < σ do

foreach replica i in 1 to χ do
c∗i ← MCsearch (φ, Ti, ci, δ);
if CDI(c∗i ) < CDImin then

CDImin ← CDI(c∗i );
c∗ ← c∗i ;

end
end
i← offset + 1;
while i + 1 ≤ χ do

j ← i + 1;
∆← (βj − βi)(CDI(ci)− CDI(cj));
if ∆ ≤ 0 then

swapLabels (ci,cj);
else

q ← U(0, 1);
if q ≤ e−∆ then

swapLabels (ci,cj);
end

end
i← i + 2;

end
offset ← 1− offset ;

end
return c∗;

Algorithm 6.4: A replica exchange Monte Carlo algorithm to optimize codon bias
with respect to the CDI measure.
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Input: φ – the number of search steps to perform, T – the search temperature, c –
the current codon design, and δ – the maximum number of consecutive
codons in exchanges

Output: c∗ – the best codon design found
c∗ ← c;
CDImin ← CDI(c);

for i← 1 to φ do
c′ ← c;
// choose an index uniformly at random for a
// possible exchange of δ consecutive codons

k ← Û(1, n− δ + 1);
c′ ← Exchange (c′,k,δ) ;
// ensure this state is valid
if ValidState(c′) then

∆CDI← CDI(c′)− CDI(c);
if ∆CDI ≤ 0 then // always accept an improvement

c← c′;
else

// choose a real number uniformly at random in [0,1]
q ← U(0, 1);
if q > e

−∆CDI
T then

c← c′;
end

end

if CDI(c) < CDImin then
CDImin ← CDI(c);
c∗ ← c;

end
end

end
return c∗;

Algorithm 6.5: A Monte Carlo algorithm to optimize codon bias with respect to the
CDI measure.
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the application of SLS to this problem to first point out possible shortcomings of existing

SLS algorithms and finally to prove that our proposed algorithm has the PAC property.

Lemma 6.2.2. The m-valid-exchange search neighbourhood is guaranteed to be complete

for a codon optimization problem instance of size m, regardless of the value of k.

Proof. By definition, a search neighbourhood is complete if and only if it guarantees the

possibility that given enough time, any state can be reached from any other state through a

series of search state transitions. Now suppose our sequence containing m codon positions

begins in a valid state and further suppose there is only one other valid state of all possible

assignments to the m codons. All possible assignments of codons could be enumerated and

tested for validity in a finite, albeit exponential, amount of time. When the other valid

assignment is found, a transition could occur in one step. Hence, the m-valid-exchange

search neighbourhood is complete for problem instances of size m.

Lemma 6.2.3. A δ-valid-exchange search neighbourhood is not guaranteed to be complete

for a codon optimization problem instance of size m, for 1 ≤ δ < m and k ≥ 1.

Proof. We will argue by contradiction. Assume a δ-valid-exchange search neighbourhood is

guaranteed to be complete for a problem instance of size m, with 1 ≤ δ < m and k ≥ 1.

As any δ-valid-exchange search neighbourhood fully contains all potential transitions of a

(δ − 1)-valid-exchange search neighbourhood, we assume δ = m − 1, the maximum value

under our assumption. Now consider the problem instance shown in Fig. 6.3 with m = 4

and k = 1. The problem instance has two valid states and without loss of generality, we

assume it is initially in the valid state shown in the top row (AGGAGGAGGAGG). Note

that a transition must change at least one codon to change the state. As all other codons

for Arginine are in the forbidden set, at least one of the AGG codons must change to a

CGT codon. However, note that changing any one codon in this way creates a forbidden

motif of GCG and/or GTA with neighbouring AGG codons. Therefore, all δ AGG codons

selected to be exchanged must simultaneously change to CGT to remain valid with respect

to adjacent codons. However, as one of the codons in the sequence can not be exchanged,

since δ < m, at least one AGG codon is adjacent to a CGT codon, introducing a forbidden

motif. Therefore, the transition is invalid and can not be accepted. As there does not exist

a series of transitions from one state to another within this instance, we have contradicted

our assumption. Hence, any δ-valid-exchange search neighbourhood is not guaranteed to be

complete for a problem instance of size m, with 1 ≤ δ < m and k ≥ 1.
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Theorem 6.2.4. A δ-valid-exchange search neighbourhood is guaranteed to be complete for

a codon optimization instance of size m and k ≥ 1, if and only if δ = m.

Proof. Note that by definition δ ≤ m. Therefore the proof follows immediately from

Lemma 6.2.2 and Lemma 6.2.3.

The consequence of Thm. 6.2.4 is that any SLS algorithm relying on a δ-valid-exchange

search neighbourhood must make other provisions to ensure the PAC property of the algo-

rithm can be guaranteed. We end this section with a proof that our proposed algorithm has

this property, however, we first comment on existing SLS algorithms for this problem found

in the literature.

There have been a number of SLS algorithms proposed for the version of the problem

not considering the elimination of forbidden motifs. These include The synthetic gene de-

signer [41], OPTIMIZER [28], DNAworks [17], and Codon Optimizer [10]. We note that

the latter identifies restriction sites within the optimized sequence, however, provides no

mechanism for automated elimination of these sites. We argue this version of the problem

is trivial. The simple algorithm we previously proposed for calculating the lower bound of

the CDI value for an instance is guaranteed to find an optimal score (and can be adapted

to find a corresponding sequence) and is therefore as effective or more effective than each of

the aforementioned algorithms. As the simple algorithm runs in linear time and space, we

see no advantage to the use of an SLS algorithm for this purpose.

Next, we consider SLS algorithms which attempt to eliminate forbidden motifs. The

algorithm proposed for UpGene [11], probabilistically assigns codons for each codon posi-

tion, tests for forbidden motifs and reiterates the process if any are found. As the algorithm

randomly generates a new codon sequence with each iteration, then given enough time, it

can be guaranteed that a valid solution will be found. However, the algorithm terminates

immediately upon finding a valid solution and never attempts to converge towards an opti-

mal answer. The Gene Designer SLS algorithm of Villalobos et al. [40] is perhaps the most

sophisticated algorithm currently in the literature. The authors use a simple Monte Carlo

search algorithm similar to the one used in the subsidiary search of our REMC algorithm.

They initialize their search with codons randomly assigned by probability of their frequency.

The algorithm then determines if the initial sequence contains forbidden motifs. If it does,

the user is warned or asked to eliminate. They do provide a mechanism for elimination of

motifs, however, no details are given and no guarantee is made that a valid sequence can be
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found. Furthermore, no attempt is made to optimize the CDI score, rather, the objective,

by their definition, is to find a sequence which does not contain repeat regions. This is a

feature our algorithm currently does not consider, but can be adapted to do so with the use

of suffix trees. It should also be noted that their algorithm does not test if forbidden motifs

have been introduced through search perturbation steps, however, one could easily extend

the algorithm in a similar manner as ours. As their search uses a 1-exchange neighbourhood,

therefore allowing transitions to invalid states, the algorithm can be considered to have the

PAC property. However, no selection pressure is present to drive the search towards valid

solutions and finally no mechanism is in place to determine if an incumbent solution is valid.

Overall, no algorithm was found in the literature which attempts to optimize the CDI

value of a design, although other SLS algorithms having the PAC property have been pro-

posed. We conjecture that our algorithm provides a stronger guarantee of finding an optimal

solution. We end our discussion by proving our SLS CDI optimization algorithm has the

PAC property.

Theorem 6.2.5. Our proposed algorithm for finding an optimal codon design solution, with

respect to the CDI measure, under the constraint that forbidden motifs must be avoided is

probabilistically approximately complete.

Proof. First, consider that our algorithm is guaranteed to begin in a valid state (free of

forbidden motifs), if such a codon design exists. Next consider that our algorithm, using the

Metropolis criteria, attempts to converge upon the optimal solution reachable from the initial

state, through a series of valid transitions. An invalid state is never accepted, therefore,

the incumbent solution is always the best previously observed and is valid. Given sufficient

time, the optimal solution which is reachable will be found. However, by Thm. 6.2.4 the

(k + 1)-valid-exchange neighbourhood we employ is not guaranteed to be complete, and

therefore it may not be possible to reach other valid states, and hence the global optimal

solution. This is fully dependent upon the initial search state. This however can be offset

by the introduction of a restart strategy. A static restart strategy reinitializes a search

to a new start state before again proceeding. Restarts can be repeatedly applied, until a

global optimum is found. Note that the initial state is sampled randomly and uniformly

from all valid codon designs and therefore, we are guaranteed that given enough time, a

valid search state will be chosen from which the search can converge on the global optimum

solution. We end by stating that explicit restarts are not necessary as repeated runs of the

http://www.synthesisgene.com ShineGene



CHAPTER 6. CODON OPTIMIZATION 59

algorithm achieves this guarantee. Therefore, the proposed algorithm is probabilistically

approximately complete.

6.2.3 Designing Homologous Sequences

It was noted by Wu et al. [41] that codon optimization has previously been reported to

improve protein expression levels in some studies [6, 8, 20, 34, 9], while inhibiting expres-

sion in others [3, 42] and overall, the factors affecting protein expression are not yet fully

understood. It is therefore beneficial if multiple, each possibly optimal (by our definition),

codon designs could be produced as some may be more highly expressible than others. We

now briefly describe a process by which multiple homologous sequences can be designed for

an input amino acid sequence, having the property that any two of these sequences differ

by at least a predetermined threshold.

For this task we modify the SLS CDI optimization algorithm in the following way. First,

a valid sequence (or search state) in the CDI algorithm is any one which does not contain

a forbidden motif. We extend this definition by adding the constraint that a sequence

must also differ from each sequence in a set P by at least a percentage γ, 0 ≤ γ ≤ 1.0.

A reasonable value for γ may be 0.25. Second, we repeat the design process, adding a

newly designed homologous sequence to the set P in each iteration, until some fixed time

has elapsed or no additional valid solution is found. We evaluate different values of γ and

highlight the utility of this adaptation for collision-aware oligo design in Sect. 6.3.

6.3 Experimental Analysis

The effectiveness and runtime efficiency is evaluated for the CAI dynamic programming

algorithm in Sect. 6.3.1 and the CDI SLS algorithm in Sect. 6.3.2. The SLS algorithm is

also compared against the performance of its subsidiary Monte Carlo search, to determine

if there is any benefit gained from an extended ensemble algorithm. In Sect. 6.3.3 we

evaluate the hypothesis that multiple homologous DNA sequences, designed through codon

optimization, improves the chances for collision free oligo designs by necessitating fewer

synthons.

For all experiments run, the same hardware and filtered GENECODE biological test set

was used as detailed in Sect. 3.3. Experiment runs to evaluate the CAI and CDI algorithms
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Figure 6.3: A counter example to the claim that a δ-exchange search neighbourhood is
guaranteed to be complete for a problem instance of size m, with 1 ≤ δ < m and k ≥ 1.
Shown above is an instance consisting of four Arginine amino acids, a forbidden set F =
{CGC, CGA, CGG, AGA,GCG, GTA} and therefore k = 1. Arginine has six corresponding
codons, however, four of them appear in F and are shown with red boxes. Adjacent codons
are shown connected by an edge. Two adjacent codons are shown connected by a bold edge
if and only if their concatenation does not introduce a forbidden motif. Clearly, there are
only two valid codon assignments for this problem instance, and when δ < 4, there is no
possible transition from one to the other.
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performance use the entire 3,157 sequences of the set. Experiments conducted for Sect. 6.3.3

use the same 500 randomly chosen sequences evaluated in Chapter 3. In all cases, we use

the codon bias of Escherichia coli as reported by the Codon Usage Database 3.

6.3.1 Performance of the CAI optimization algorithm

To test the effectiveness of the CAI dynamic programming algorithm and its runtime perfor-

mance, a forbidden motif set was first constructed which could be considered typical in prac-

tice. It is common for a gene synthesis experiment to use a single restriction enzyme. Fur-

thermore, for reasons affecting gene expression, a common task is the removal of polyhomo-

meric regions (consecutive repeat region of identical nucleotides). Therefore, we have created

the forbidden motif set F = {GAGTC, GACTC, AAAAA, TTTTT,GGGGG,CCCCC}
where GAGTC is the motif for the MlyI restriction enzyme, GACTC is its reverse com-

plement and the other motifs ensure no polyhomomeric regions greater than length four

are permitted. Results are shown for all 3,157 sequences in Fig. 6.4. On the left side of

the figure, the optimal CAI value is plotted against sequence length. A worst CAI value

of 0.87 is observed for a short sequence of 100 bases. Optimal CAI values of at least 0.95

were possible for all sequences having length greater than 200 bases. Shown on the right

side of the figure is the CPU runtime performance based on sequence length. Clearly, the

algorithm scales linearly in practice. The worst runtime of 0.7 seconds is observed for the

longest sequence, having 8185 bases.

6.3.2 Performance of the CDI optimization algorithm

We adopt a similar experimental protocol to evaluate the CDI algorithm as that used for the

CAI algorithm. However, as the CDI optimization algorithm is stochastic in nature, ten in-

dependent runs are conducted, having a maximum runtime of 15 seconds, for each sequence

and the mean CDI value is reported. If a run reached the CDI theoretical lower bound value

for the corresponding sequence, it was immediately terminated. Also, based on previous ex-

perience, we fixed the parameters of the REMC search algorithm as follows. Five replicas

were used with corresponding temperatures found in the set {1, 25.5, 50.75, 75.25, 100}. Lo-

cal steps, for Monte Carlo subsidiary search in each replica, was fixed at 5000 iterations.

3http://www.kazusa.or.jp/codon
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Figure 6.4: Evaluation of the CAI dynamic programming algorithm for each of the 3,157
sequences of the filtered GENECODE data set using a forbidden motif set F described in
the text. On the left, the optimal CAI value for each sequence is plotted against sequence
length (shown in log scale). On the right, CPU runtime performance is plotted for each
sequence, against its length and a lowess regression curve of best fit is added.

While, in theory, runtime performance could be improved through parameter tuning, we

found these values to be highly effective and present evidence of this below.

Results are shown in Fig. 6.5. On the left of the figure, the difference of the mean CDI

value of ten independent runs and the CDI theoretical lower bound is shown plotted against

sequence length for all 3,157 sequences. Overall, a solution having the lower bound CDI

value is found for 3,092 sequences. We note that due to mandatory elimination of forbidden

motifs, the best CDI values found for the other 65 sequences may, in fact, be optimal. Of all

sequences with length greater than 300 bases, a solution having the lower bound CDI value

was found for all but four. The added design flexibility of longer sequences is apparent

and can be directly attributed to the fact that, in general, longer sequences potentially

have exponentially more solutions for this problem than shorter ones. In the right side

of the figure, the collective runtime distribution is shown for all sequences. The runtime

distribution shows that 99% of all runs terminate, due to finding the theoretical lower bound

CDI value, in less than 0.2 seconds. All runs which find a theoretical lower bound CDI value

terminate after only 7 seconds. The remaining runs correspond to the 65 sequences for which

the lower bound CDI value was not reached.
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Figure 6.5: Evaluation of the CDI SLS optimization algorithm for each of the 3,157 sequences
of the filtered GENECODE data set using a forbidden motif set F described in the text.
All data points represent the mean of ten independent runs having a maximum runtime of
15 seconds. On the left, the difference between the observed CDI value and the theoretical
lower bound is shown plotted against sequence length (shown in log scale). On the right,
the runtime distribution of all 3,157 sequences is shown.

REMC vs. MC performance

While the REMC SLS algorithm has shown to be highly effective and efficient in practice,

a natural question to ask is whether or not the same results could be achieved by a single

instance of its subsidiary Monte Carlo search algorithm. To objectively evaluate the per-

formance difference between a classical Monte Carlo algorithm and the extended ensemble

REMC algorithm employed here, we conduct the following experiment. We first construct

a new forbidden motif set such that it is unlikely any solution can be found having a CDI

value equivalent to the theoretical lower bound. The purpose for this is determine if one

of the algorithms consistently finds improved solutions over the other. Using a forbidden

set where the motifs are easy to eliminate would make finding a solution with a CDI value

equivalent to the lower bound more likely. This would, in turn, make it difficult to distin-

guish performance between algorithms, other than runtime. Therefore, we add short motifs

to our forbidden set with F = {CAGCT, TTT, AAA}. As our REMC search uses five sub-

sidiary Monte Carlo search instances at five different temperatures, comparing with only

one Monte Carlo search fixed at one of these temperatures may be an unfair comparison.

http://www.synthesisgene.com ShineGene
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Distribution of CDI values Relative to REMC

Temperature Improved Worse Same

1.00 1 1745 1411
25.25 1 1756 1400
50.75 0 1744 1413
75.25 0 1763 1394

100.00 0 1738 1419

Table 6.1: Performance for all 3,157 sequences, relative to REMC, is shown for each Monte
Carlo search fixed at different temperatures.

Therefore, we compare with a Monte Carlo Search performed at each of the five temper-

atures in the temperature set of our REMC algorithm ({1, 25.25, 50.75, 75.25, 100}). Each

algorithm performed ten independent runs, having a maximum runtime of 15 seconds, for

each sequence. The mean CDI value of the ten runs is reported.

In Fig. 6.6, the difference in mean CDI values, between the REMC algorithm and a Monte

Carlo algorithm, is shown for each sequence. On the left, the comparison is made with the

Monte Carlo algorithm fixed at a temperature of 1.0. In all but one instance, the REMC

algorithm finds a solution as good or better than the MC algorithm. Similarly, the right

side of the figure contrasts REMC with a Monte Carlo algorithm fixed at temperature 100.0.

The MC algorithm does not outperform the REMC algorithm in any instance. However, it

is also worth noting that as sequence length increases, the performance difference between

REMC and MC algorithms diminishes. Overall the results, relative to the REMC algorithm,

are broken down for each temperature the Monte Carlo algorithm is run at and is shown in

Table 6.1. Regardless of temperature, the Monte Carlo algorithm is outperformed for at least

55% of the sequences, whereas, of all instances, the REMC algorithm is only outperformed

twice.

6.3.3 Utility of homologous sequences for synthon design

Intuitively, having more potential oligo designs to chose from can increase the chances that a

design can be found which contains few oligo collisions, if any. Using our adapted SLS CDI

optimization algorithm, we conduct the following experiment to test this intuition. For each

of the 500 sequences where optimal collision-oblivious designs were found in Chapter 3 and

http://www.synthesisgene.com ShineGene
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Figure 6.6: The relative difference in mean CDI values for all 3,157 sequences of the filtered
GENECODE data set is reported for the REMC algorithm and a Monte Carlo algorithm
fixed at a temperature of 1.0 (left) and a Monte Carlo algorithm fixed at a temperature
of 100.0 (right). The Monte Carlo algorithm outperforms the REMC algorithm in only
one instance (when temperature is fixed at 1.0) and is shown with a filled light circle.
As sequence length increases, performance difference between REMC and MC algorithms
diminishes.

for which the minimal number of synthons required for those designs to become collision-free

were determined in Chapter 5, we attempt to create two different sets of 20 corresponding

homologs. The first set is subject to the constraint that every homolog must have a sequence

difference of at least 10% to every other sequence in the set. The second set requires a 25%

sequence difference between every homolog. In creating each set, we run the SLS CDI

algorithm until 20 homologs satisfying the sequence difference constraint are found, or a

run of 15 seconds is unable to find a new solution. After the homolog sets are created, the

optimal collision-oblivious design is determined for each. All of these designs are evaluated

to determine the minimum number of synthons required to make them collision-free. Finally,

the best homolog of the set, the one requiring the fewest synthons, is compared against the

design of the original sequence.

Results for two comparisons are shown in Fig. 6.7. On the left, designs having a maxi-

mum length of 42 bases, with all other design constraints also fixed, are compared between

the original sequences and the best homolog from the set having at least 10% sequence dif-

ference to any other. In all instances but one, the best homolog requires fewer synthons than

http://www.synthesisgene.com ShineGene



CHAPTER 6. CODON OPTIMIZATION 66

●●

●●

●

●

●●●●●●● ●●●●●●●●●●●●●●●●●●●●●

●

● ●● ●●●● ●

●

●●●●● ●● ●●●●●●●● ●●●●●●

●

●●●●●●● ●● ●●●●●● ●●

●

●●●●●●●●●●●●● ●

●

●●●● ●●●●

●

●

●● ● ●● ●●● ●●●●●●●● ●

●

●●

●

●●● ●●●● ●● ●

●

●●●

●

●●●●● ●●●● ●●●●●●●●● ●●●●●●●● ●●●●

●

●

●●●●●●●●●●●●●●●

●

● ●●●●●

●

● ●●● ●●● ●●●●● ●● ●●

●

●● ●

●

●● ●●●● ● ●●●●●●●● ●●● ●●●●

●

●●●●●●●● ●● ●●●

●

●●●●●●●●●●●● ●●●●● ●●●●● ●●●●●●

●●

● ●●●● ●● ●●● ●● ●●●●●●●●●●●● ●●

●

●●●●●● ●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●● ●● ●●●●

●

●●● ●●●

●

●●●●● ●●●●●●

●

●●●● ●●●

●

●● ●● ●●

●

●● ●

●

●●● ●●● ●● ●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●● ●● ●● ●●● ●●●● ●●●● ●●●● ●●●●

●

●●

●

●● ●●●●●●●●

5 10 15

5
10

15

minimum synthons [original]

m
in

im
um

 s
yn

th
on

s 
[o

pt
im

iz
ed

]

●●

●

●

●

●

●●●●●●●● ●●●●●●●●●●●●●●●●●●●●

●

● ●●●●●●

●●

●●●●●

●

●●●●●●●●● ●●●●● ●

●

●●●●●●●

●

●●●●●●● ●●

●

●●●●●●●●●●● ●● ●

●

●●●● ●● ●●

●

●

●●● ●● ●●●●●●● ●●●●●

●

●●

●

●●●● ●●●●●●●●●●

●

●●●●● ●●●●● ●●●●● ●●● ●●●●●●●● ●●●●

●

●

●●●●●●●●●●●●● ●●●●● ●●●●

●

●

●●

●

●

●● ●●●●●●●●●

●

●●●

●

●● ●●●● ●●●●●●●●● ●●● ●●●●

●

●●●●●●●● ●● ●● ●

●

●●●●●●●●●●●●●●●●● ●●●●● ● ●●●●●

●

●●●●●●●● ●●●● ●

●

●●●●●● ●●●●● ●●

●

●●●●●●● ●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●● ●●● ●

●

●●●

●

●●● ●● ●

●

●●●●●● ●●●●●

●

●●●● ●●● ●●● ●●

●

●

●

●●

●●

●●● ●●● ●● ●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●

●

● ●● ●●● ●●●

●

●●●● ●●●●● ●●●

●

●●

●

●● ●●●●●●●●

5 10 15

5
10

15

minimum synthons [original]

m
in

im
um

 s
yn

th
on

s 
[o

pt
im

iz
ed

]

Figure 6.7: A comparison between the number of synthons required for optimal collision-
oblivious designs of original sequences and the best design found amongst a corresponding
set of homologs. On the left, results for designs having maximal oligo length of 42 and
homologs having a sequence difference of at least 10% is shown. On the right, results for
designs having maximal oligo length of 52 and homologs having a sequence difference of at
least 25% is shown.

the corresponding original sequence. There are also some notable improvements. The two

worst cases for number of required synthons in the designs of the original sequences, of 15

and 16 required synthons, is reduced to only requiring 4 synthons by the best corresponding

homolog sequences. Similarly, the left side of the figure shows results for designs having

maximum oligo length of 52 bases and at least 25% sequence difference between homologs.

In this comparison, no instance of the original sequence has fewer synthons than the best

corresponding homolog. Overall, the results are reported in Table 6.2 for both sequence

difference requirements and both maximum oligo length design constraints. There is a clear

advantage for this adaptation in producing designs requiring fewer synthons. However, we

end by noting that certain applications in gene design require a specific DNA sequence, and

therefore, other methods for eliminating the degree of oligo collisions must continue to be

investigated.
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lmax γ Improved Worse Same

42 0.10 148 1 351
42 0.25 147 0 353
52 0.10 132 1 367
52 0.25 128 0 372

Table 6.2: A comparison of the minimum number of synthons required for designs of the set
of homologs compared with the original sequence, for all 3,157 sequences. An improvement
occurs when at least one of the homologs has an optimal collision-oblivious design requiring
less synthons than the original sequence.
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Chapter 7

Conclusions and Future Work

In this thesis, we presented a suite of novel algorithms for in vitro gene synthesis. In

Chapter 2, we formally defined two variants of the oligo design problem, collision oblivious

oligo design, when oligo collisions are not considered, and collision aware oligo design. In

Chapter 3 we presented an efficient dynamic programming algorithm for ungapped and

gapped collision oblivious oligo design and showed the gapped variant to be highly effective

in practice. Our algorithm is the first to guarantee an optimal solution will be found, if one

exists. We provided empirical evidence, using a large gene set, that oligo collisions occur

infrequently in the designs produced by our collision oblivious algorithm. In Chapter 4, we

provided the first results on the computational complexity of oligo design for gene synthesis.

We motivate that the general problem is NP-hard by proving NP-hardness for a related

problem, Collision-Aware String Partition (CA-SP). Motivated by this fact and previous

evidence suggesting collisions occur infrequently in practice, in Chapter 5 we described and

evaluated an efficient synthon partition algorithm which determines the minimal number

of regions required to make a design collision free. We have shown that for reasonable

parameters, two synthons are usually sufficient to achieve this design goal. In Chapter 6,

we formally introduced the codon optimization problem. For the variant of optimizing

the codon adaptation index value of a gene, under the assumption forbidden motifs must

be avoided, we improved upon the state-of-the-art by proposing a linear time and space

dynamic programming algorithm. For the variant concerned with optimizing codon bias,

we proposed a stochastic local search algorithm which was shown to be highly effective

and efficient in practice. We extended this algorithm to design sets of optimized homologs,

having a required sequence difference between all pairs. This adaption was shown to be

68
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CHAPTER 7. CONCLUSIONS AND FUTURE WORK 69

useful for finding designs which require few synthons to become collision free.

Future work includes wet-lab validation that the designs produced by our algorithms

result in correct gene assemblies, with high levels of expression. Also, despite motivating

evidence suggesting collision aware oligo design is NP-hard, the question still remains open.

Maňuch et. al have extended this result by showing the CA-SP problem remains hard even

under a restricted alphabet of size four [24]. What remains is to extend the proof to

consider a duplex of strings. Potential improvements to our proposed algorithms should

also be considered. While we have purposely separated the problem of codon optimization

from oligo design, as certain applications require a specific DNA sequence, we could gain to

integrate the two design tasks, when possible. For instance, when oligo collisions occur and

the collision graph is produced, codons can be swapped to systematically eliminate these

mis-hybridizations. This process, however, is not trivial, since altering the DNA sequence

of any oligo could potentially introduce new collisions. Furthermore, it may be possible

to solve the codon bias optimization problem with a deterministic algorithm. A promising

start may be to capitalize on the fact that it is possible to determine all valid codon designs

in linear time. Although there may be an exponential number of valid designs, algorithms

such as A∗ search may prove useful to determine an optimal answer, in reasonable time.

Finally, as the need for entire genome synthesis increases so too will the requirement that

gene synthesis algorithms scale efficiently. A consideration we have ignored in this study

is the use of parallel algorithms for the various design tasks. While we have not explicitly

outlined the details in the previous chapters, most of the algorithms we propose appear to

be trivially parallelizable. However, careful study of this claim must be made to ensure

algorithm correctness and relative efficiency can be maintained.

We conclude this thesis by stating that we have improved upon the current state-of-the-

art for algorithms concerned with gene synthesis. It is important that we continue to refine

these methods as new insight and understanding of gene expression is discovered.
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Appendix A

Comparison: Existing Gene

Synthesis Algorithms

Although theoretical results have been given throughout the thesis as to why our proposed

algorithms improve upon the current state-of-the-art, we now provide empirical evidence.

As existing software varies greatly in the platforms they support and the options they

implement, we have focused on evaluating characteristic performance differences only and

have not attempted to compare runtime performance. Certain implementations make it

impossible to test a large number of problem instances, therefore, we have selected five

sequences at random from the reference filtered GENECODE data set detailed in Chapter 3.

The five sequences are listed in Table A.1.

Table A.1: Test sequences for algorithm comparison.

Sequence ID Sequence

1117 TGTTCATCCGCAGGGAGCAGGCCAACAACATCCTGGCGAGGGTCACGAGGGCCAATTCCTTT

CTTGAAGAGATGAAGAAAGG ACACCTCGAAAGAGAGTGCATGGAAGAGACCTGCTCATACGA

AGAGGCCCGCGAGGTCTTTGAGGACAGCGACAAGA

Continued on next page

70

http://www.synthesisgene.com ShineGene
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Sequence ID Sequence

1742 TTCTAATACCCGATTTACAATTACATTGAACTACAAGGATCCCCTCACTGGAGATGAAGAGA

CCTTGGCTTCATATGGGATTGTTTCTGGGGACTTGATATGTTTGATTCTTCAAGATGACATT

CCAGCGCCTAATATACCTTCATCCACAGATTCAGAGCATTCTTCACTCCAGAATAATGAGCA

ACCCTCTTTGGCCACCAGCTCCAATCAGACTAGCATGCAGGATGAACAACCAAGTGATTCAT

TCCAAGGACAGGCAGCCCAGTCTGGTGTTTGGAATGACGACAGTATG

168 GAAGTCACCAAAGCAGTACAGCCTCTCTTACTGGGAAGAATCATAGCTTCCTATGACCCGGA

TAACAAGGAGGAACGCTCTATCGCGATTTATCTAGGCATAGGCTTATGCCTTCTCTTTATTG

TGAGGACACTGCTCCTACACCCAGCCATTTTTGGCCTTCATCACATTGGAATGCAGATGAGA

ATAGCTATGTTTAGTTTGATTTATAAGAAG

1876 CTGTAGCTGCCCTTTTTGGTCAGCAGCTCCTTGAACTGGCCCAGGGTGACAGCGCGGCCCCT

CACCAGGGTGCGGTAGGGGATGGGTTCCCCGCAGAAGTAGTACGCCACAACGATGCTGTCAC

ACGGCTGGGCACTCCCGCCGCCCACCTTCCTCTGCGATCTTGTC

Continued on next page
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Sequence ID Sequence

209 CTGATGCTGTTACCAGGAGGCTGTCTGAGGCACCTGGTCTACAGGATGAGGCACTAACGGGG

TTTATGGAAGAGCAAAAGGCAATGGTGGTAGGAATGACAAGGGAACTGTCTGAACATGCAGG

TTGGTTCAGTCCGGGGGTTGCAGCAGGCCAGGCACCCACCTGAGACGTGGCCAGGGCTGAAA

CGGCACAGCCTGCAGGTGCCACAGTTAAATCTATGGATGGTTTTGGTGGCAGCTGAGGGGAG

GATGACTTAGGAAGGTTCTCCTCATTGATCACCCTGTTCCCTTGTGGCAAACTGGAAGGAGT

CGAAGCCACAGTTTTGTTATCAACTTTGGCCCCTGTGTTCGAGGCCCTGCTGCTGTCTATAA

TAACCTTGAGTTGGGGGTGTGGTGGAGAAGGAGTTTGGGAGAGCCCTGGCTTTTTTGGAGGG

ATAGGAGGAGGATTTCCTCTGTCAACTCGTGCTACACCATGAGTCTTTAAACTGGTCCGACC

AACTGGAGGGTGGGTGCCAACATCCCCTGTTGGGGGCACTCCAGGCCTTGAGGGAGCACCTG

CTTGAGGGCTTGTAAATCTTGACAGTGCTTGGGTCACAGTATTCCGAGCTAGTTGTTTGGCC

ACTAGGTTGTCACGACTTGTAGGCGAGACATCTCTTGACGGAGGACTTTGGGTAGTATTTCC

ATTTTGGTCTGGGTCGTTAGCATTGCCCTGAAATCTAAATCTAGCTGCTTGGATTCGTGGGT

TTAGACCTGGATGCAAAGAGGTGTTGGCACATGGTGAATGTAAACTGTGCATAGGTGGAGCT

TGCGAGTTCTGAGGAGCTATGCCTGGTGTTTGAGCGGTGGGAGGGGCAGCGTTACTGGGAAG

TGGGGGTGTGCTACTGGTTGGATCTGGTGTTGAGCCAGTGCTTGGTCCATTTTCCTCAATTT

TGTTTGCACTTGGAGGTGGGAAAGCGGGTACAGAAGCGCCAATCAAGTCACCATAGGAAGCC

TGCCTGTCAATACCTGGTCTGGCCATGGTGGCACTGGTGCACACGCTCCCTTTTGCATTTGC

AGAAACTAGGGGACTCCCTGTGGAAGGTTTTACAGGCATGGTTAAAGGCAACTTTTTCATGT

GGTCAGCATTTTCTGTCACTAGGTCTGTCTGGCATGCAACAGACCTTGTCACAGTTCCTTCT

GTTCCCACAGATATGGAAACCAAACGCCTATCTTTTGTCTTCCGTGGAAGAGAGAGGCTTGG

TTTGCTGTCACTTCCCCTTTTCAGTTGCTCAATCATTTTCCTCATCTTGTCTATCTCCTCTT

TGAGGTCAGTGGTGTGTGCTTCTTCCCGGTTCAGCTTGGCACGAAGCTGTTCCCGCTCAGTG

TCAAACTCAGAGAGTTGTTTTTCCATCTGAGCTTCCATTTCTGTGCTTCTTCGTTTCTCAGC

GGAGAGTTCCTCTTCTAATTCATTCGTCTTTTTCTTTTCCTCTTCCAGTTTGGCCATTACGT

CTTCGAGCTTCTGGGCCTCCTCTATGACTTTGCCTGAGAGCTGCTTGCACTCTTTGACCAGC

ATCAGGACCACCTGCTTGTTCTTGCCACGCTCTTCCTCAAGGCGGGCAGCCAGCTTCTTGTG

CTCTTGCTCAAGGGCTTGTAGCTGAAGCTTCTCCATTTCCAG
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A.1 Oligo Design Algorithms

In this section, we compare our gapped collision oblivious oligo design algorithm with exist-

ing algorithms available to us. Each algorithm treats design constraints slightly differently.

For instance, in most existing oligo design algorithms, desired oligo length can be input, how-

ever, it is not treated as a hard constraint. Furthermore, all algorithms provide the option

to optimize oligo overlap melting temperature, but each interpretation is slightly different.

For instance, some attempt to minimize a range around a fixed value while others accept

any melting temperature within a particular range. We do not seek to provide objective

tests to account for all of these differences, since the goal of this evaluation is to demonstrate

characteristic performance differences. Therefore, for each of the five sequences, we have run

each of the algorithms with the general designs goals of 1) providing oligos approximately

40 bases in length, 2) which are unlikely to self-hybridize and 3) have a narrow range for

oligo melting temperature near 60�. We were able to evaluate the Assembly PCR oligo

maker [30], denoted as APCROM, DNAWorks [17] and Gene2Oligo [29]. All calculations of

melting temperature were made using the programs SimFold and Pairfold [4].

In Fig. A.1 left side, a comparison of the range of overlap melting temperatures is pre-

sented for each algorithm for sequence 209 (1.6kb in length). We configured our collision

oblivious algorithm to optimize for overlap melting temperature, with a maximum temper-

ature of 60�. Of all the algorithms, ours reported the narrowest range of overlap melting

temperature. On the right side of the figure, the distributions of self-hybridization melting

temperatures for each algorithm is reported for the same 1.6kb sequence. Again, our algo-

rithm reports the best results, as the highest melting temperature for any oligo is less than

20�. Results are similar for the other four sequences (data not shown).

A.2 Codon Optimization Algorithms

In this section, we compare our REMC CDI optimization algorithm with UpGene [11].

We are unable to show results of a comparison with Gene Designer [40] due to terms of

the software license. As previously mentioned, other algorithms do not attempt to remove

forbidden motifs, therefore our comparison is limited to the one algorithm. Also we note

that for deterministic CAI optimization algorithms which remove forbidden motifs, we are

only aware of the Θ(n2) algorithm of Satya et al. [31]. As of this writing we have not
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Figure A.1: A comparison of distributions for overlap melting temperature regions and
for self-hybridization melting temperatures is shown for oligo designs of four different oligo
design algorithms on a 1.6kb sequence.

attained their implementation. However, since our algorithm has a linear time complexity,

an empirical comparison is unnecessary.

We limited our REMC algorithm to maximum runtime of 5 seconds for any run. The

UpGene algorithm was run for five independent runs on each sequence. According to

the algorithm description, the search terminates when a valid sequence is found or a set

number of iterations of the algorithm has been run. We made no attempt to adjust the

maximum number of iteration attempts. Results are shown for both UpGene and our

algorithm for five independent runs on each sequence. We used the forbidden motif set

F = {CAGCT, TTT, AAA}. For two of the problem instances, including the largest (209),

UpGene was unable to find a valid design. In addition, a valid design could not be reached

for one run on sequence 1117. Our algorithm, however, finds a valid design for all runs.

There is no variability in CDI scores between different runs for each sequence, suggesting

that these may be optimum scores. Overall, the worst CDI scores attained by our REMC

algorithm outperform the best CDI scores attained by UpGene, in every instance.
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Sequence ID % Valid Designs min CDI score max CDI score mean CDI score

UpGene

1117 80% 0.751562 0.935116 0.862195
1742 0%
168 100% 0.734483 0.968649 0.872846

1876 100% 0.828317 0.997601 0.891928
209 0%

REMC CDI optimization algorithm

1117 100% 0.413213 0.413213 0.413213
1742 100% 0.257367 0.257367 0.257367
168 100% 0.387502 0.387502 0.387502

1876 100% 0.342693 0.342693 0.342693
209 100% 0.117092 0.117092 0.117092

Table A.2: CDI score results for UpGene and our algorithm after five independent runs
on each of the five test sequences. Our algorithm outperforms UpGene for all problem
instances.
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